Ocean Engineering Major (B.S.)


Ocean engineering is a field of study that seeks to solve engineering problems associated with the ocean, including those problems associated with the sustainable utilization of ocean resources and the scientific exploration and study of the ocean environment. Ocean engineering is an interdisciplinary field with roots in mechanical, electrical, civil, and environmental engineering, with strong ties to physical, chemical, biological, and geological oceanography. Students of ocean engineering are best served when they are formally trained inside a framework that fuses the expertise of these often-disparate fields.

The BSOE curriculum provides students with a solid engineering core and prepares students for professional engineering careers or for graduate study. The BSOE starts with foundational classes in math, physics, chemistry, and engineering computing, along with introductions to ocean engineering through seminars and oceanography coursework. Students develop their engineering acumen through coursework and laboratory studies that are focused on analysis, experimentation, and design. Students proceed to increasingly advanced coursework in ocean instrumentation, waves and tides, the design of ocean structures, coastal engineering, ocean measurements, and ocean acoustics. Opportunities exist for at least four technical electives, which help students gain further competence in an area of their choice. Students finish their curriculum with a two-semester senior capstone design project. Elective courses in the arts, humanities, and the social sciences are included to provide a well-rounded education.

Students work with an advisor to plan a program that is based on the courses shown in the ocean engineering degree plan below that totals not less than 128 credits. The degree plan is considered a guideline and may be modified to suit student needs and desires within the constraints of meeting minimum credit hours, course prerequisites, and non-major elective course requirements. Some ocean engineering elective courses may not be offered every year.

Technical Elective Requirements:

The ocean engineering program curriculum requires four technical electives that are CEPS 600-level or higher courses that have been approved by the OE undergraduate curriculum committee. Sequences have been identified that will provide students more in-depth opportunities in one of the ocean engineering sub-areas.  One of the technical electives needs to be a program-approved statistics course (OE 764 Spectral Analysis of Geophysical Time Series Data, MATH 644 Statistics for Engineers and Scientists, or ESCI 701 Quantitative Methods in Earth Sciences).

Discovery Program Requirements:

Students must satisfy the University's Discovery Program requirements. The following features are unique to students in the Ocean Engineering program:

As is the case across the University, all students are required to take an Inquiry course or an Inquiry Attribute course during their first two years. This is satisfied with ESCI 501 Introduction to Oceanography. The Discovery Environment, Technology, and Society category requirement is met upon receiving a B.S. degree in ocean engineering. The Discovery Social Science category must be satisfied with either ECON 402 Principles of Economics (Micro) or EREC 411 Environmental and Resource Economics Perspectives. The Discovery senior capstone experience is satisfied with TECH 797 Undergraduate Ocean Research Project.

Grade-Point Average Requirements:

In order to graduate with an ocean engineering B.S. degree, students must have at least a 2.0 grade-point average in all engineering and science courses, including required technical electives, normally taken as department requirements after the start of the junior year as defined in the degree plan below.

Predictor courses: To enter the sophomore year, students must achieve a greater than (but not equal to) 2.00 GPA in PHYS 407 General Physics I and MATH 426 Calculus II with no grade below a C.

To enter the junior year, students must achieve a minimum GPA of 2.00 in ME 525 Statics, ME 526 Mechanics of Materials, and ME 503 Thermodynamics with only one C- grade allowed and no grades below C-.

Students are allowed two repeats of these predictor courses to achieve the predictor rule requirements before being removed from the program. This can be a single class repeated twice or two classes repeated once. Students are also removed from the program if they obtain a semester GPA <1.5 three times. Students may petition to be reinstated after one year out of the program.

Transfer Policy for UNH Students into the Department of Mechanical Engineering:

CEPS Students: To transfer into the freshman or sophomore year, students must earn a combined GPA greater than (but not equal to) 2.00 in PHYS 407 General Physics I and MATH 426 Calculus II with no grade below a C in these two courses.

If students are enrolled in ME 525 Statics (or CEE 500 Statics for Civil Engineers), ME 526 Mechanics of Materials (or CEE 501 Strength of Materials), or ME 503 Thermodynamics, they must earn a combined GPA of 2.00 with no grade below a C- in two of these courses with only one C- grade allowed to transfer in and advance to the junior year. 

Non-CEPS Students: To transfer into the Department of Mechanical Engineering from another college at UNH, students have to satisfy the CEPS college transfer policy as well as the Department of Mechanical Engineering transfer policies listed above according to status.

List of Required Courses:

CHEM 405Chemical Principles for Engineers4
or CHEM 403
CHEM 404
General Chemistry I
and General Chemistry II
ECON 402Principles of Economics (Micro)4
or EREC 411 Environmental and Resource Economics Perspectives
ECE 537Introduction to Electrical Engineering4
ESCI 501Introduction to Oceanography4
ESCI 720Ocean Measurements Lab4
IAM 550Introduction to Engineering Computing4
MATH 425Calculus I4
MATH 426Calculus II4
MATH 525
MATH 526
Linearity I
and Linearity II
or MATH 527
MATH 528
Differential Equations with Linear Algebra
and Multidimensional Calculus
ME 503Thermodynamics3
ME 525Statics4
ME 526Mechanics of Materials3
ME 608Fluid Dynamics3
ME 627Dynamics3
OE 400Ocean Engineering Seminar1
OE 401Ocean Engineering Seminar1
OE 490Introduction to Ocean Engineering4
OE 610Ocean Instrumentation Lab4
OE 754Ocean Waves and Tides4
OE 757Coastal Engineering and Processes3
OE 758Design of Ocean Structures3
OE 765Underwater Acoustics3
PHYS 407General Physics I4
PHYS 408General Physics II4
TECH 797Undergraduate Ocean Research Project2
Technical Electives: 600-level or higher, choose four electives; at least one of the four courses must be 4 credits.
Plan of Study Grid
First Year
MATH 425 Calculus I 1 4
OE 400 Ocean Engineering Seminar 1
PHYS 407 General Physics I 2 4
Discovery Program Elective 4
Discovery Program Elective 4
ENGL 401 First-Year Writing 3 4
MATH 426 Calculus II 4
OE 490 Introduction to Ocean Engineering 4
PHYS 408 General Physics II 4
Discovery Program Elective 4
Second Year
CHEM 405
Chemical Principles for Engineers 2
or General Chemistry I and General Chemistry II
ESCI 501 Introduction to Oceanography (satsifies the Discovery Inquiry requirement) 4 4
MATH 528
Multidimensional Calculus 5
or Linearity I
ME 525 Statics 4
IAM 550 Introduction to Engineering Computing 4
MATH 527
Differential Equations with Linear Algebra 5
or Linearity II
ME 503 Thermodynamics 3
ME 526 Mechanics of Materials 3
OE 401 Ocean Engineering Seminar 1
Third Year
ECE 537 Introduction to Electrical Engineering 4
ME 608 Fluid Dynamics 3
ME 627 Dynamics 3
OE 754 Ocean Waves and Tides 4
OE 610 Ocean Instrumentation Lab 4
OE 757 Coastal Engineering and Processes 3
OE 758 Design of Ocean Structures 3
Technical Elective 6 4
Fourth Year
ESCI 720 Ocean Measurements Lab 4
OE 765 Underwater Acoustics 3
TECH 797 Undergraduate Ocean Research Project 2
Discovery Program Elective 4
Technical Elective 6 4
TECH 797 Undergraduate Ocean Research Project 2
Technical Elective 6 3-4
Technical Elective 6 3-4
Discovery Program Elective 4
Discovery Program Elective 4
 Total Credits129-131

The Student Outcomes consist of the ABET 1-7 general requirements for all engineering programs with four additional outcomes specific to the Ocean Engineering program which are subsets of (1).

  • (1) ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science and math. Knowledge of fluid mechanics and hydrostatics with depth in at least one. An ability to apply solid mechanics and dynamics through multivariate calculus and differential equations. Knowledge of oceanography, water waves, and underwater acoustics. Ability to apply probability and applied statistics.
  • (2) ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety and welfare, as well as global, cultural, social, environmental and economic factors.
  • (3) ability to communicate effectively with a range of audiences.
  • (4) ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments which must consider the impact of engineering solutions in global, economic, environmental and societal contexts.
  • (5) ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
  • (6) ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
  • (7) ability to acquire and apply new knowledge as needed, using appropriate learning strategies.