Chemical Engineering Major: Bioengineering Option (B.S.)

https://ceps.unh.edu/chemical-bioengineering/program/bsche/chemical-engineering-major-bioengineering-option

Under this option, the required courses deal with the application of basic biological sciences and chemical engineering principles to the design and operation of large-scale bioprocesses for the production of high-value medicinal, food and beverage, pharmaceutical, biomedical, genetic engineering, and health care products. The elective courses permit the student to study topics of special interest in more depth or gain a broader perspective in bioengineering or some closely related subjects such as biochemistry or biotechnology experience in manufacturing or research. Three courses are required, and an additional course of at least three credits should be selected from the electives list. Students interested in the bioengineering option should declare their intention to the department faculty during the sophomore year.

The Chemical Engineering program (B Sci in Chemical Engineering) is accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org, under the General Criteria and the Program Criteria for Chemical, Biochemical, Biomolecular and Similarly Named Engineering Programs.

Degree Requirements

Minimum Credit Requirement: 132 credits
Minimum Residency Requirement: 32 credits must be taken at UNH
Minimum GPA: 2.0 required for conferral*
Core Curriculum Required: Discovery & Writing Program Requirements
Foreign Language Requirement: No

All Major, Option and Elective Requirements as indicated.
*Major GPA requirements as indicated.

Major Requirements

Required Courses
CHBE 400Chemical and Bioengineering Lectures1
CHBE 501Material Balances3
CHBE 502Energy Balances3
CHBE 601Fluid Mechanics and Unit Operations3
CHBE 602Heat Transfer and Unit Operations3
CHBE 603Applied Mathematics for Chemical Engineers4
CHBE 604Chemical Engineering Thermodynamics3
CHBE 612Chemical Engineering Laboratory I3
CHBE 614Separation Processes3
CHBE 651Biotech Experience/Biomanufacturing4
CHBE 703Mass Transfer and Stagewise Operations3
CHBE 707Chemical Engineering Kinetics3
CHBE 708Chemical Engineering Design4
CHBE 713Chemical Engineering Laboratory II3
CHBE 752Process Dynamics and Control4
CHBE 761Biochemical Engineering4
CHBE 766Biomaterials4
CHEM 405Chemical Principles for Engineers4
CHEM 683Physical Chemistry I3
CHEM 684Physical Chemistry II3
CHEM 685Physical Chemistry Laboratory2
CHEM 686Physical Chemistry Laboratory2
CHEM 651Organic Chemistry I3
CHEM 652AOrganic Chemistry II3
CHEM 653Organic Chemistry Laboratory2
MATH 425Calculus I4
MATH 426Calculus II4
MATH 527Differential Equations with Linear Algebra4
MATH 644Statistics for Engineers and Scientists4
PHYS 407General Physics I4
PHYS 408General Physics II4
Elective Courses
Select one of the following:3-4
Chemical Engineering Project
Independent Study
Chemical Sensors
Cell Phenotyping and Tissue Engineering Laboratory
Computational Molecular Bioengineering
Biomedical Engineering
Physical Biochemistry
Principles of Biochemistry
Principles of Biochemistry
Total Credits104-105

By the time of graduation, students will have

  • an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
  • an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
  • an ability to communicate effectively with a range of audiences.
  • an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
  • an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
  • an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
  • an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.