ANALYTICS AND DATA
SCIENCE

With an explosion of big data initiatives in organizations worldwide, the demand for data-savvy individuals has never been higher. Our Analytics and Data Science programs are specifically designed to prepare the next generation of innovative data scientists and analysts.

The Analytics and Data Science programs in the Applied Engineering and Sciences Department at UNH Manchester prepare students with cutting-edge technical skills they need to manage, distill, and interpret data for all economic sectors, from finance to healthcare to marketing and advertising. Through experiential learning that include real-world course projects, internship experiences, and capstone courses, students master programming languages and techniques using modern platforms to derive actionable information from data.

Programs

- Analytics and Data Science Major: Analytics Option (B.S.) Manchester
- Analytics and Data Science Major: Data Science Option (B.S.) Manchester
- Analytics Minor (Manchester)
- Data Science Minor (Manchester)

Courses

Analytics (DATA)

DATA 557 - Introduction to Data Science and Analytics
Credits: 4
An introduction to data science and analytics. The landscape of analytics, including an overview of industries and sectors using analytics or expected to use analytics in the near future. Data generation, data management, data cleaning, and data preparation. Ethical use of data. Focus on visual and exploratory analysis. Project-based, with an emphasis on collaborative, experiential learning. Programming and statistical software will be used, but previous experience is not required.
Attributes: Environment, TechSociety (Disc)

DATA 674 - Predictive and Prescriptive Analytics I
Credits: 4
A first course in predictive and prescriptive analytics. Supervised learning models including linear models and CART models. Model assessment and scoring methods, including cross-validation. Regularization and model tuning. Unsupervised learning models including k-means clustering. Project-based, with an emphasis on collaborative, experiential learning. Statistical software will be used and programming required. Prereq: MATH 425, COMP 570, DATA 557.

DATA 675 - Predictive and Prescriptive Analytics II
Credits: 4
A second course in predictive and prescriptive analytics. Time series analysis and model ensembles. Bootstrapping, simulation, optimization. Monte Carlo methods. Project-based, with an emphasis on collaborative experiential learning. Statistical software will be used and programming required. Prereq: DATA 674.

DATA 676 - Advanced Predictive and Prescriptive Analytics
Credits: 4
Advanced topics in predictive and prescriptive analytics. Unsupervised learning models including clustering and dimensionality reduction. Project-based, with an emphasis on collaborative, experiential learning. Statistical software will be used and programming required. Prereq: DATA 675.

DATA 677 - Time Series Analysis
Credits: 4
An introduction to time series analysis. Trends, seasonality, and autocorrelation. ARIMA models, forecasting, and model selection. Project-based, with an emphasis on collaborative, experiential learning. Statistical software will be used and programming required. Prereq: DATA 674.

DATA 678 - Model Ensembles
Credits: 4
An introduction to model ensembles. Bagging, boosting, and random forests. Project-based, with an emphasis on collaborative, experiential learning. Statistical software will be used and programming required. Prereq: DATA 674.

DATA 679 - Bootstrapping
Credits: 4
An introduction to bootstrapping. Resampling techniques, confidence intervals, and hypothesis testing. Project-based, with an emphasis on collaborative, experiential learning. Statistical software will be used and programming required. Prereq: DATA 674.

DATA 680 - Simulation
Credits: 4
An introduction to simulation. Monte Carlo methods, variance reduction techniques, and model validation. Project-based, with an emphasis on collaborative, experiential learning. Statistical software will be used and programming required. Prereq: DATA 674.

DATA 681 - Optimization
Credits: 4
An introduction to optimization. Linear, nonlinear, and integer programming. Project-based, with an emphasis on collaborative, experiential learning. Statistical software will be used and programming required. Prereq: DATA 674.

DATA 682 - Statistical Software and Programming
Credits: 4
An introduction to statistical software and programming. Using R and Python for data analysis. Project-based, with an emphasis on collaborative, experiential learning. Statistical software will be used and programming required. Prereq: DATA 674.

DATA 683 - Data Management
Credits: 4
An introduction to data management. Data cleaning, data transformation, and data integration. Project-based, with an emphasis on collaborative, experiential learning. Statistical software will be used and programming required. Prereq: DATA 674.

DATA 684 - Data Visualization
Credits: 4
An introduction to data visualization. Creating effective visualizations using R and Python. Project-based, with an emphasis on collaborative, experiential learning. Statistical software will be used and programming required. Prereq: DATA 674.

DATA 685 - Data Privacy and Security
Credits: 4
An introduction to data privacy and security. Ethical considerations, data protection, and data breaches. Project-based, with an emphasis on collaborative, experiential learning. Statistical software will be used and programming required. Prereq: DATA 674.

DATA 686 - Big Data
Credits: 4
An introduction to big data. Characteristics of big data and the emerging software stack for working with massive datasets, including Hadoop and MapReduce. Algorithms for extracting information from massive datasets. A first course in linear algebra is not a prerequisite, but is recommended. Prereq: MATH 425, DATA 557, or instructor permission.

DATA 687 - Ethical Data Science
Credits: 4
An introduction to ethical data science. Ethical considerations in data science, including data privacy, data security, and data stewardship. Project-based, with an emphasis on collaborative, experiential learning. Statistical software will be used and programming required. Prereq: DATA 674.

DATA 688 - Analytics in Sports
Credits: 4
An introduction to analytics in sports. Data science applications in sports analytics. Project-based, with an emphasis on collaborative, experiential learning. Statistical software will be used and programming required. Prereq: DATA 674.

DATA 689 - Analytics in Media
Credits: 4
An introduction to analytics in media. Data science applications in media analytics. Project-based, with an emphasis on collaborative, experiential learning. Statistical software will be used and programming required. Prereq: DATA 674.

DATA 690 - Internship Experience
Credits: 4
A field-based learning experience via placement in a business, nonprofit, or government organization using analytics. Under the guidance of a faculty advisor and workplace supervisor, students gain practical experience solving problems and improving operational processes using analytics. May be repeated but no more than 4 credits may fill major requirements. Prereq: UMST 582.
Repeat Rule: May be repeated for a maximum of 8 credits.

DATA 750 - Neural Networks
Credits: 4
Artificial neural networks power the recent advances in computer vision, speech recognition, and machine translation. This is a first course on neural networks with a focus on applications in computer vision and natural language processing. Topics will include generic feedforward neural networks, convolutional neural networks for computer vision tasks, and recurrent neural networks with application to natural language processing, with other topics to be selected based on the interests of the instructor and the class. Prereq: Senior status.
Equivalent(s): COMP 750

DATA 757 - Big Data
Credits: 4
A first course in large-scale analytics and data science. Characteristics of big data and the emerging software stack for working with massive datasets, including Hadoop and MapReduce. Algorithms for extracting information from massive datasets. A first course in linear algebra is not a prerequisite, but is recommended. Prereq: MATH 425, DATA 557, or instructor permission.

DATA 759 - Natural Language Processing
Credits: 4
An introduction to natural language processing. Topics will include generic feedforward neural networks, convolutional neural networks for computer vision tasks, and recurrent neural networks with application to natural language processing, with other topics to be selected based on the interests of the instructor and the class. Prereq: Senior status.

DATA 790 - Capstone Project
Credits: 4
Under direction of a faculty mentor, students work in teams to find solutions to complex real-world problems using analytics. Projects may come from internal or external sources. Students define the problem, obtain the necessary data, develop suitable models and solutions, and present their results. Prereq: Senior status.

Computer Technology (COMP)

COMP 405 - Introduction to Web Design and Development
Credits: 4
Students learn the fundamentals of how the Internet works, gain practice with foundational technologies that power websites and learn how to solve problems like a programmer. A significant portion of the course covers web front-end design and development; students create a website using HTML/CSS, and are introduced to JavaScript language and responsive web design techniques. Topics include Internet history and structure, legal and ethical issues. No prior programming experience is required.
Attributes: Environment, TechSociety (Disc)
Equivalent(s): IT 403
COMP 415 - Mobile Computing First and For Most
Credits: 4
This course examines how mobile computing is transforming our everyday lives and the society and environment in which we live. In this course the students will engage the mobile ecosystem by inventing apps and solving problems of personal, social, and environmental relevance. Students will learn computational thinking skills and create mobile apps using AppInventor, a free and open source visual blocks-based programming environment. Students will share their creative apps with peers and communities. They will also exercise inclusion, civic engagement, and peer learning in the context of innovating with free and open source software that empower individuals and communities.
Attributes: Environment,TechSociety(Disc)

COMP 424 - Applied Computing 1: Foundations of Programming
Credits: 4
Integrates three essential computing competencies: Problem solving, data analysis, and programming. Problems are chosen from data-driven real-world examples such as astronomy, cryptography, environmental simulation, image processing, and video games. Emphasis is on formulating problems, thinking creatively about how computations can solve problems, and expressing solutions clearly and accurately. Using Python, students learn design, implementation, testing, and analysis of algorithms and programs.
Equivalent(s): CS 410, CS 414, CS 415

COMP 425 - Introduction to Programming
Credits: 4
An introduction to problem solving and object-oriented programming. Emphasis is on programming concepts and techniques and their application to software development. Students learn to write, review, document, share, and demonstrate interactive applications and participate in pair programming, peer-led tutoring, and collaborative learning throughout the course.
Equivalent(s): CS 410, CS 414, CS 415

COMP 430 - Systems Fundamentals
Credits: 4
The underlying hardware and software infrastructure upon which applications are constructed is collectively described by the term "computer systems." Computer systems broadly span the subdisciplines of operating systems, parallel and distributed systems, communications networks, and computer architecture. The class will present an integrative view of these fundamental concepts in a unified albeit simplified fashion, providing a common foundation for the different specialized mechanisms and policies appropriate to the particular domain area.
Equivalent(s): ECE 401

COMP 500 - Discrete Structures
Credits: 4
This course prepares students for understanding computational complexity; i.e., what makes a given task/problem hard and how hardness is measured. It accomplishes this through the study of algorithms, permutations, combinations, probability, graph theory, and trees.

COMP 520 - Database Design and Development
Credits: 4
An introduction to developing database applications with business users. Topics include fundamentals of the relational model, structured query language, data modeling and database design and implementation. Students use a variety of database management system tools to model, code, debug, document, and test database applications. Students complete real-world team projects.
Equivalent(s): IT 505

COMP 525 - Data Structures Fundamentals
Credits: 4
Data structures and algorithms are fundamental to developing solutions for computational problems. In this course students design and implement data and functional abstractions; analyze and select appropriate data structures to solve computational problems; practice programming and software development techniques to implement computational solutions. Prereq: COMP 424 or COMP 425.
Equivalent(s): CS 416, CS 417

COMP 530 - Machine and Network Architecture
Credits: 4
Examines the following topics. Machine organization: program and data representation; registers, instructions, and addressing modes; assemblers and linkers. Impact of hardware on software and software on hardware. Introduces the Internet protocol suite and network tools and programming and discusses various networking technologies. Prereq: COMP 430.

COMP 550 - Networking Concepts
Credits: 4
Explores the fundamentals of data communications and networking requirements for an organization, including the standard layers of network organization; network technologies; and protocols for LANs, WANs, wireless networks, and switched and routed networks. Includes issues of security, topology, management, and future developments.

COMP 560 - Ethics and the Law in the Digital Age
Credits: 4
Examines classical and ethical and legal constructs as they pertain to current and topical issues. Students develop and articulate a personal point of view on a broad range of issues based on sound ethical principles and consider the impact of such views on co-workers, employers, and society in general. Topics also include: major social issues involving intellectual property, privacy, current U.S. and international relations relevant to ethical theories. The interplay between ethics and law is explored through current case studies and students formulate and support conclusions based on ethical constructs presented in class. Case study analysis is a major component in course delivery. Writing intensive.
Attributes: Humanities(Disc); Writing Intensive Course

COMP 570 - Statistics in Computing and Engineering
Credits: 4
An introduction to tools from probability and statistics that are needed by computing and engineering professionals. Exploratory data analysis including graphic data analysis. discrete and continuous probability distributions, inference, linear regression, and analysis of variance, with applications from artificial intelligence, machine learning, data mining, and related topics. Project work and use of statistical software are an integral part of the course. Prereq: MATH 425.
COMP 574 - Applied Computing 2: Foundations of Machine Learning
Credits: 4
Introduction to making informed, data-based decisions with machine learning, data representation and analysis tools, and programming. Emphasis is on the importance of gathering, cleaning, normalizing, visualizing and analyzing data to drive informed decision-making in any field of study. Students learn to use tools and techniques to work on real-world datasets using procedural and basic machine learning algorithms. Students also learn to ask good, exploratory questions and develop metrics to come up with a well-thought-out analysis. Prereq: COMP 424.

COMP 625 - Data Structures and Algorithms
Credits: 4
An introduction to object-oriented design, analysis, and implementation of data structures and algorithms. Students apply concepts and techniques to develop information processing applications. Best programming practices of editing, debugging, documentation, testing, and code review are stressed. Familiarity with an object-oriented programming language and experience with application development are required. Prereq: COMP 525.
Equivalent(s): CS 515

COMP 630 - Systems Software
Credits: 4
Today's organizations need to deliver applications and services by automating processes that develop and deploy software and manage scalable computing infrastructures. Students will learn how to integrate development, operations, and cloud computing and gain experience with design approaches, version control, continuous integration, cloud-based APIs, and monitoring metrics. Key to systems software tools and automation processes are increased communication and collaboration practiced in the course team projects. Students who took COMP 698 Sp/Topic Systems Software cannot repeat for credit. Prereq: COMP 530.

COMP 650 - Network Administration and Maintenance
Credits: 4
Advances the understanding of networks through practical application of administering and maintaining an intranet and its servers. Students use a modern server operating system and network management tools. Routine tasks include: install and configure servers, setup directory services and access privileges, tune network services, understand and implement network security, perform routine maintenance, and practice troubleshooting techniques. Prereq: COMP 550.

COMP 690 - Internship Experience
Credits: 4
The internship provides field-based learning experience through placement in a computing field. Students gain practical computing experience in a business, non-profit, or government organization. Under the direction of a faculty advisor, the student is expected to contribute to the information technology products, processes, or services of the organization. Majors only. May be repeated but no more than 4 credits may fill major requirements. Prereq: UMST 582.
Repeat Rule: May be repeated for a maximum of 8 credits.

COMP 698 - Special Topics
Credits: 1-4
Course topics not offered in other courses. Topics covered vary depending on contemporary computing topics, programmatic need, and availability and expertise of faculty. Barring duplication of subject, may be repeated for credit.
Repeat Rule: May be repeated for a maximum of 8 credits.

COMP 705 - Full Stack Development
Credits: 4
Students work in teams and implement, test, document, demonstrate, and deploy web systems that solve organizational needs expressed by real clients. Emphasis is on advanced server-side and client-side programming and integration of web application with database and web server applications. Free and open source development and communication tools are used to carry out the course project. Prereq: Senior status.

COMP 715 - Information Security
Credits: 4
Topics include general security principles and practices, network and system security, access control methodology, and cryptography. Students develop a simple cryptographic system based on sound mathematical principals, work to improve it, and find ways to attack it. Some programming required. Prereq: Senior status.

COMP 720 - Database Systems and Technologies
Credits: 4
This is a project course that provides practical experience with developing a storage subsystem of a computer information system. Topics include data modeling, database design, system implementation, and integration with a target application. Emphasis is on implementation activities, database application development artifacts, project communication, and supporting system development and project management tools. Prereq: Senior status.

COMP 721 - Big Data for Data Engineers
Credits: 4
In this course students gain practical experience developing data-oriented applications in modern infrastructure frameworks, also known as the cloud data solutions. Guided by what a data scientist profile is, students become familiar with the use cases of data oriented applications. They will apply key data modeling and data design concepts to meet business requirements. Students will also apply modern software development to iteratively construct solutions using established reference architectures. Project work will be based in Google Cloud Platform and Amazon Web Services. Prereq: Senior Status. Special fee.

COMP 725 - Programming Languages
Credits: 4
Explores the main features of modern, high-level, general purpose programming languages from the user point of view. Provides students with an opportunity to use non-imperative programming paradigms, such as object-oriented, functional, and visual, and to learn how specific features of such languages can be used efficiently in solving problems. The purpose is to gain knowledge regarding the languages studied as well as providing the basis to conduct analysis related to comparisons and divergence in capabilities. Prereq: Senior status.
Equivalent(s): CIS 698, COMP 698, ET 647

COMP 730 - Object-Oriented Software Development
Credits: 4
Presents an iterative methodology for developing software systems. Development activities include requirements elicitation and analysis, system and object design, implementation and testing, project and configuration management, infrastructure maintenance, and system deployment to end user. Students work in team, assume developer roles, build models of a real-world system, and deliver a proof-of-concept or prototype. Prereq: Senior status.
Attributes: Writing Intensive Course
COMP 740 - Machine Learning Applications and Tools
Credits: 4
Introduces students to practical approaches of machine learning. The course is an exploration of creative applications of artificial intelligence using modern machine learning components and tools. Different application domains are considered, such as computer vision, natural language processing, and cyber security. Students learn to evaluate machine learning systems as well as their potential prediction problems. Cannot receive credit if credit earned for COMP 780 AdvTop/ML Tools & Appl. Prereq: Senior status.

COMP 750 - Neural Networks
Credits: 4
Artificial neural networks power the recent advances in computer vision, speech recognition, and machine translation. This is a first course on neural networks with a focus on applications in computer vision and natural language processing. Topics will include generic feedforward neural networks, convolutional neural networks for computer vision tasks and recurrent neural networks with application to natural language processing, with other topics to be selected based on the interests of the instructor and the class. Prereq: Senior status.
Equivalent(s): DATA 750

COMP 780 - Advanced Topics in Computing
Credits: 1-4
The course includes advanced topics and emerging areas in computing. Barring duplication of subject, the course may be repeated for credit. Prereq: Senior status or permission.

COMP 790 - Capstone Project
Credits: 4
This course requires the development of a real world project that responds to an IT organizational need. The project is undertaken by a team of students. An iterative approach is used to incrementally address the project requirements while constructing a prototype of the IT solution to the original problem. Prereq: COMP 690 and CIS 610. Writing intensive. Attributes: Writing Intensive Course

COMP 795 - Independent Study
Credits: 1-4
Advanced individual study under the direction of a faculty mentor. Content area to be determined in consultation with faculty mentor. Prereq: permission. May be repeated.

Faculty

Analytics and Data Science Faculty