NUTRITION MAJOR:
NUTRITIONAL SCIENCES
OPTION (B.S.)

https://colsa.unh.edu/agriculture-nutrition-food-systems/program/bs/nutrition-major-nutritional-sciences-option

Description

Nutrition is the study of how nutrients and food components function at molecular, cellular, and whole-body levels to impact human health and disease. Students are grounded in fundamental sciences as they develop nutrition-specific competencies in nutrition and health, foods, nutritional assessment, wellness, life cycle nutrition, and/or metabolic biochemistry.

The nutrition program prepares students for entry-level positions in health care, education, or the biotechnology industry, or entry into post-baccalaureate professional programs. Nutrition faculty have expertise in clinical nutrition, sports nutrition, and food science, as well as assessing risk factors of chronic disease risk (i.e. obesity, diabetes, cardiovascular, cognitive) in diverse populations (pediatric, young adult, older adult).

Students in the Nutritional Sciences option most often enroll in a post-graduate educational degree program (e.g., medical school, graduate school, physician assistant program, etc.) or enter the biomedical/biotechnology workplace.

Requirements

A minimum grade of C- or above is required in all NUTR courses required by the major.

Nutritional Science Capstone Experience

One capstone experience, supervised and approved within the major, is required of all seniors. The capstone explores areas of interest based on the integration of prior learning. The capstone requirement for Nutritional Sciences students is satisfied through the completion of NUTR 720 Community Nutrition or NUTR 751 Nutritional Biochemistry of Micronutrients in Nutrition during their senior year.

NOTE: NUTR 751 Nutritional Biochemistry of Micronutrients is a required course; it will only fulfill the university’s capstone requirement if taken during the student’s senior year.

Degree Plan

SAMPLE Course Sequence for Nutritional Science

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUTR 400</td>
<td>Nutrition in Health and Well Being</td>
<td>4</td>
</tr>
<tr>
<td>NUTR 401</td>
<td>Professional Perspectives on Nutrition</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 401</td>
<td>First-Year Writing</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 411</td>
<td>Introductory Biology: Molecular and Cellular</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 403</td>
<td>General Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Credits</td>
<td>17</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUTR 476</td>
<td>Nutritional Assessment</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Credits</td>
<td>4</td>
</tr>
</tbody>
</table>

Degree Plan Table

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 411</td>
<td>Introductory Biology: Molecular and Cellular</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 412</td>
<td>Introductory Biology: Evolution, Biodiversity and Ecology</td>
<td>4</td>
</tr>
<tr>
<td>BM CB 658</td>
<td>General Biochemistry</td>
<td>5</td>
</tr>
<tr>
<td>& BM CB 659</td>
<td>General Biochemistry Lab</td>
<td>4</td>
</tr>
<tr>
<td>BMS 503</td>
<td>General Microbiology</td>
<td>5</td>
</tr>
<tr>
<td>& BMS 504</td>
<td>General Microbiology Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 403</td>
<td>General Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 404</td>
<td>General Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 545</td>
<td>Organic Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>& CHEM 546</td>
<td>Organic Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>GEN 604</td>
<td>Principles of Genetics</td>
<td>4</td>
</tr>
<tr>
<td>NUTR 400</td>
<td>Nutrition in Health and Well Being</td>
<td>4</td>
</tr>
<tr>
<td>NUTR 401</td>
<td>Professional Perspectives on Nutrition</td>
<td>1</td>
</tr>
<tr>
<td>NUTR 476</td>
<td>Nutritional Assessment</td>
<td>4</td>
</tr>
<tr>
<td>NUTR 650</td>
<td>Life Cycle Nutrition</td>
<td>4</td>
</tr>
<tr>
<td>MATH 424B</td>
<td>Calculus for Life Sciences</td>
<td>4</td>
</tr>
</tbody>
</table>

University of New Hampshire
Second Year

Fall
- **CHEM 545 & CHEM 546** Organic Chemistry and Organic Chemistry Laboratory
- **BMS 507** Human Anatomy and Physiology I
- Select one of the following:
 - **BIOL 528** Applied Biostatistics I
 - **PSYC 402** Statistics in Psychology
 - **SOC 402** Statistics

Credits
- **17**

Spring
- **BMS 503 & BMS 504** General Microbiology and General Microbiology Laboratory
- **BMS 508** Human Anatomy and Physiology II
- **SOC 400 or PSYC 401** Introductory Sociology or Introduction to Psychology
- **Elective (any course)**

Credits
- **17**

Third Year

Fall
- **GEN 604** Principles of Genetics
- **Nutrition Elective** 2-4
- **Discovery Course**
- **Elective (any course)**

Credits
- **14-16**

Spring
- **NUTR 650** Life Cycle Nutrition
- **BMCB 658 & BMCB 659** General Biochemistry and General Biochemistry Lab
- **Discovery Course**
- **Nutrition Elective** 2-4

Credits
- **15-17**

Fourth Year

Fall
- **NUTR 750** Nutritional Biochemistry
- **Discovery Course**
- **Elective (any course)**
- **Elective (any course)**

Credits
- **16**

Spring
- **NUTR 751** Nutritional Biochemistry of Micronutrients
- **600 or 700-Level Elective Outside the Major**
- **Discovery Course**
- **Elective (any course)**

Credits
- **16**

Total Credits: 128-132

Student Learning Outcomes

- Demonstrate how to locate, interpret, evaluate and use professional literature to make ethical, evidence-based conclusions and decisions.
- Use current information technologies to locate and apply evidence-based guidelines and protocols.
- Apply critical thinking skills.
- Demonstrate effective and professional oral and written communication and documentation.
- Demonstrate an understanding of cultural competence/sensitivity.
- Describe basic concepts of nutritional genomics.
- Demonstrate an understanding of the scientific method and how it is used to generate knowledge in nutrition science.