BIOLOGY MAJOR (B.S.)

https://colsa.unh.edu/biological-sciences/program/bs/biology-major

Description

Biology is one of the most popular science majors since it provides a broad background in the biological sciences while allowing flexibility and specialization within the major. It integrates theoretical and practical (hands-on laboratory and field work) courses in different aspects of the biology of multicellular life. It encompasses the study of structural and functional relationships of living organisms at the molecular, cellular, and organismal level, the interactions of living systems with the environment and with each other, and the evolutionary relationships of life. Our goal is to create an environment for those with a scholarly interest in the biological sciences, and to extend their understanding, awareness, and appreciation of the diversity inherent in the biological sciences. Our major is aimed at promoting an excellent education in biological sciences by involving undergraduate students in a strong interaction with faculty both in the classroom and in research laboratories.

The biology major prepares students for post graduate degrees in the biological and medical fields, and for job opportunities in industry (environmental, biomedical, pharmaceutical, and biotechnological) and governmental research, and secondary school teaching. Completion of the four-year undergraduate program plus a fifth-year internship will be necessary for biology teaching certification. Students who plan to enter medical, dental, or related professional schools are advised to confer with their faculty adviser to work the requirements for these programs into their academic majors.

Core courses in the biology major are from departments that contribute to the biological sciences community at UNH. The core curriculum consists of introductory and upper-level science courses plus seven additional courses in the biological sciences; three of these must be selected from course lists in three broad categories.

While students are advised to declare the biology major as incoming first-year students to assure adequate program planning, transfer into this major at a later stage is also possible. Several of the other biological science majors share the same biology core curriculum. For the first to two years, it is quite easy to change to or from these other majors.

Requirements

Biology Core Curriculum

The biology courses in the core curriculum constitute an integrated sequence that train students in the basic skills and concepts of knowledge inherent to the biological sciences. The biology core allows a student to obtain a broad background in biology, and in the related physical sciences and math that provide a foundation for success in understanding biological principals.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 400</td>
<td>Professional Perspectives on Biology 1</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 412</td>
<td>Introductory Biology: Evolution, Biodiversity and Ecology</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 411</td>
<td>Introductory Biology: Molecular and Cellular</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 541</td>
<td>Ecology</td>
<td>4</td>
</tr>
<tr>
<td>BMS 563 & BMS 504</td>
<td>General Microbiology and General Microbiology Laboratory</td>
<td>5</td>
</tr>
</tbody>
</table>

Biology Electives

In addition to the biology core curriculum, students must complete seven biology elective courses. One course must be taken from each of the three categories/disciplines; the other four electives can be chosen from the category lists or can be any other biological sciences course with approval of the student's adviser. At least two of these courses must have labs. All courses must be 500-level or above. There must be one animal-identified course (A) and one plant/fungal/algae course (FP). One capstone experience is required of all seniors; see subsequent section on capstones for detailed requirements. Corequisite lecture and lab courses count as one course.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 528</td>
<td>Applied Biostatistics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 401</td>
<td>Introduction to Physics I</td>
<td>8</td>
</tr>
<tr>
<td>CHEM 545</td>
<td>Organic Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>BIOL 400</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 780</td>
<td>Capstone Companion Course</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Credits: 57
Biology Major (B.S.)

- BIOL 752 New England Mushrooms: a Field and Lab Exploration (FP) 4
- GEN 715 Molecular Evolution 4
- MEFB 603 Introduction to Marine Biology 4
- MEFB 510 Field Ornithology (SML, A) 4
- MEFB 530 Evolution and Marine Diversity (SML) 4
- MEFB 625 Introduction to Marine Botany (FP) 5
- MEFB #630 Biodiversity and Biology of Marine Invertebrates (SML, A) 4
- MEFB 674 Ecology and Marine Environment (SML) 4
- MEFB 714 Field Animal Behavior (SML, A) 4
- MEFB 717 Lake Ecology 4
- MEFB 725 Marine Ecology 4
- MEFB 747 Aquatic Plants in Restoration/Management (FR C) 4
- NR 506 Forest Entomology (A) 4
- MEFB 772 Fisheries Biology Conservation and Management (A) 4
- NR 642 Introduction to Biogeography 4
- NR 660 Ecology and Biogeography of New Zealand 5
- NR 663 Applied Directed Research in New Zealand 4
- NR 712 Mammalogy (A) 4
- NR 713 Quantitative Ecology 4
- NR 765 Community Ecology 4
- SAFS 661 Plant Pathology (FP) 4
- ZOOL 542 Ornithology (A) 4
- ZOOL 555 Introduction to Entomology (A) 4
- ZOOL 566 Herpetology (A) 4
- ZOOL 613 Animal Behavior (A) 5
- ZOOL 660 Evolution 4
- ZOOL 708 Stream Ecology 4
- ZOOL 710 Sharks and Bony Fishes (A) 4
- ZOOL 726 Conservation Behavior (A) 4
- ZOOL 733 Behavioral Ecology (A, C) 4

Other Elective Options

- BIOL 660 Field Experience 3 1.4
- BIOL #533 Data Analysis for Life Science 4
- BIOL 675 Medical Botany (FP) 4
- BIOL 665 Biology Teaching Practices 3 1.4
- BIOL 700 Current and Controversial Issues in Biology (C) 4
- BIOL 711 Experimental Design & Analysis 4
- BIOL 770 Senior Seminar in Biology (C) 2
- BIOL 795 Independent Investigations in Biology 3 1-4
- BIOL 799 Honors Senior Thesis 3 2-8
- BMCB 753 Cell Culture 5
- BMCB 760 Pharmacology 4
- BMS 602 Pathogenic Microbiology 5
- BMS 695 and Pathogenic Microbiology Laboratory 4
- BMS 655 Human and Animal Parasites (A) 3
- BMS 703 Infectious Disease and Health 4
- BMS 706 Virology 5
- BMS 708 and Virology Laboratory 4
- BMS 705 Immunology (BMS 715 optional lab) 3
- BMS 711 Toxicology 4
- GEN 717 Molecular Microbiology 5
- HMP 501 Epidemiology and Community Medicine 4
- MEFB 631 Ecotoxicology and Quantitative Reasoning 4
- MEFB 741 Sharks: Biology and Conservation (A) 4
- MEFB 755 Biological Oceanography (C) 3
- NR 508 Communicating Science 4
- NSB 727 Animal Communication (A, C) 4
- NSB #728 Research Methods in Animal Behavior (A) 4
- PSYC 681 Psychology 4
- PSYC 716 Cognitive Neuroscience 4
- PSYC 731 Brain and Behavior 4
- PSYC 733 Drugs and Behavior 4
- PSYC 737 Behavioral Medicine 4
- SAFS 641 Plant Pathology (P) 4
- TECH 797 Undergraduate Ocean Research Project (A, C) 2
- ZOOL 610 Principles of Aquaculture 4

1. BIOL 400 Professional Perspectives on Biology is required only for first-year biology majors.
2. Students exploring pre-health professions should take a full year of Organic Chemistry (CHEM 651/CHEM 653 and CHEM 652/CHEM 654).
3. A 600, 695, 795, or 799 experience may substitute for one elective with academic advisor approval, but only if taken for at least four credits. These four credits may be spread over multiple semesters if they are consecutive and with the same faculty mentor.
4. This class requires enrollment in both fall and spring sections, 2 credits/semester for a total of 4 credits.

A 600, 695, 795, or 799 experience may substitute for one elective in any category with academic advisor approval, but only if taken for at least four credits. These four credits may be spread over multiple semesters if they are consecutive and with the same faculty mentor.

Note: It is strongly recommended that students participate in an exchange semester at another university, or in a field-oriented program or internship. There are many exchange opportunities available in which a full semester of credits toward the major may be earned. It is further recommended that students explore possibilities of one or more semesters of independent investigation (research projects). For details, students should contact their adviser. Financial support is available for most of these programs. In addition, students can explore the courses at the Shoals Marine Laboratory (SML), which provides an excellent setting for several "field-oriented" courses during the summer. Often there is financial support available for the SML programs. (See the SML website at https://marine.unh.edu/SML or the Cornell website at http://www.shoalsmarinelaboratory.org for details.)

Academic Requirements

To receive the B.S. degree in biology, students must complete 128 credit hours with at least a 2.0 cumulative grade-point average for completion of the degree. All UNH Discovery Program requirements, biology core curriculum requirements, plus seven additional courses from the biological sciences, and a capstone experience (see below). A minimum grade of C- is required in all biological science courses that are counted toward the requirements for a degree in biology. Students who expect to compete successfully for post-baccalaureate programs should attain a cumulative GPA of 3.0 or higher by the end of the sophomore year and maintain it at that level.

Capstone Experience

As part of the University of New Hampshire’s Discovery Program requirements, all students must complete a capstone experience during their senior year (after earning at least 90 credits). The capstone experience for students majoring in Biology consists of BOTH (1) an approved individual experience AND (2) the successful completion of the BIOL 780 Capstone Companion Course. Students will not be approved for graduation until capstone certification has been granted.

1) The individual experience

The individual experience may be satisfied through various forms of experiential learning (e.g., Honors thesis, mentored research project, internship) or a course denoted with a “(C)” in the courses listed above. The individual experience must fulfill at least one of the University’s capstone criteria:

- synthesizes and applies disciplinary knowledge and skills
- fosters reflection on undergraduate learning and experience
• demonstrates emerging professional competencies
• applies, analyzes, and/or interprets research, data, or artistic expression
• explores areas of interest based on the integration of the prior learning

Before beginning any capstone individual experience, students MUST SUBMIT A COMPLETED CAPSTONE APPROVAL FORM to their Program Coordinator.

Students can obtain this form on the Department’s Capstone page or from their Program Coordinator. Here they will describe their proposed individual experience and how it fulfills at least one of the University’s capstone criteria listed above. If the student is selecting a “C” course for their individual experience, they should obtain the course syllabus from the instructor for information about the course’s content and learning objectives.

2) Enrollment in BIOL 780

Students will also be required to enroll in BIOL 780 Capstone Companion Course (1 cr.) during the semester of their individual experience. BIOL 780 is offered every Fall and Spring semester.

• If the individual experience is a two-semester thesis, BIOL 780 should be taken during the second semester.
• If the individual experience occurs during the summer (e.g., internship), BIOL 780 should be taken during the Fall semester that immediately follows.
• Note: Because BIOL 780 is not offered during the summer, students cannot complete their individual experience during the summer and graduate during that same August. Summer experiences could only be used as individual capstone experiences if completed the summer before the student’s senior year.

Student Learning Outcomes

• Students demonstrate that they understand basic principles of biology. Demonstrate a fundamental understanding of the relationships between structure, function, and process at the level of molecular, cellular, and organismal levels. Describe the principles and mechanisms of organismal evolution and genetics as the central unifying and explanatory concepts of biology. Explain the relationship between organisms and their physical, chemical, and biological environments. Explain what biodiversity is, its value in ecosystems, and the need for its conservation.
• Students demonstrate that they can undertake scientifically valid methods of inquiry. Demonstrate proficiency in searching, reading, and understanding scientific literature. Apply the scientific process, including the framework of initiation, designing, and conducting experiments, and the appropriate analysis and discussion based on the data gathered. Exhibit technical skills in the use of appropriate laboratory and field techniques commonly used in biology.
• Students demonstrate that they can think critically and analytically. Demonstrate an ability to critically and objectively evaluate data, develop hypotheses, interpret and or design biological experiments and studies.
• Students demonstrate that they can communicate effectively. Communicate scientific material effectively in written and oral formats.

• Students practice science responsibly and ethically, and acknowledge the influence of cultural and historical biases in the sciences.