OE 400 - Ocean Engineering Seminar
Credits: 1
A seminar based course considering contemporary topics involved in ocean exploration. Faculty and guest speakers will describe thematic ocean engineering subareas through weekly presentations. The presentations will provide examples of engineering applications and ocean exploration. Class participation credit can be earned through oral discussions, presentation of contemporary OE topics, or hands on projects.
Repeat Rule: May be repeated for a maximum of 2 credits.
Grade Mode: Credit/Fail Grading

OE 490 - Introduction to Ocean Engineering
Credits: 4
Survey of engineering applications in the ocean environment. Topics vary and include hydrodynamics, waves, tides, underwater sound, instrumentation, marine geomechanics, and naval architecture. Includes guest lectures by faculty members from the Engineering departments.
Co-requisite: PHYS 407
Grade Mode: Letter Grading

OE #521 - Power of the Sea: Scientific Discovery in the Ocean
Credits: 4
This course considers the struggle to understand the physics of the sea to help predict when the sea will unleash its fury. The scientific discovery of ocean engineering topics such as tides, waves, and tsunamis are introduced through their human historical introduction. The historical significance and preliminary resolution of each physical mechanism provide context for the fundamental formulations and contemporary predictive models. The course also considers the role of ocean disasters and geopolitical conflict in motivating scientific exploration of the oceans.
Attributes: Physical Science(Discovery)
Grade Mode: Letter Grading

OE 610 - Ocean Instrumentation Lab
Credits: 4
An investigation of the discrete and integrated electronics typically used in the design and implementation of ocean instruments. Topics include both passive and active analog electronic elements typically used for signal conditioning of common oceanographic sensors (e.g., thermistors, pressure sensors, acoustic transducers); A/D and D/A conversion, sensor sampling criteria and rules, with examples from contemporary ocean instruments; embedded micro-controller/microcomputer modules for autonomous or remote sensing in ocean environments; inter-instrument communications methods typically used in ocean instruments (e.g., serial and network communications). Laboratory time will be used to develop practical experience in specification, design, development and testing of various ocean instrument components based on the material presented.
Prerequisite(s): MATH 527 with a minimum grade of D- and MATH 528 with a minimum grade of D- and IAM 550 with a minimum grade of D-.
Grade Mode: Letter Grading

OE 677 - Seamanship and Marine Weather for Ocean Engineers and Scientists
Credits: 2
A survey of basic principles of seamanship and marine weather intended for ocean engineers and ocean scientists. Reviews ship and vessel nomenclature, shipboard safety, techniques for equipment handling and instrument deployment, common shipboard evolutions associated with scientific cruises, navigation principles, and marine weather phenomena and products. Includes field trips and practical applications.
Grade Mode: Credit/Fail Grading
OE 717 - Marine Robotics and Applications
Credits: 3
The purpose of this course is to cover (in lecture and lab format) the broad spectrum of marine vehicles and applications, as well as what is involved in designing and building robotic vehicles for specific missions. Course topics include: marine applications, sensors for marine environments, vehicle subsystems, ocean and open water environment, dynamic modeling and control, and design/fabrication/testing. Various invited speakers (both scientists and engineers) provide learning modules on various marine robotic related topics.
Co-requisite: ME 670
Equivalent(s): ME 717
Grade Mode: Letter Grading

OE 753 - Ocean Hydrodynamics
Credits: 3
Fundamental concepts of fluid mechanics as applied to the ocean, continuity, Euler and Navier-Stokes equations, Bernoulli equation, stream function, potential function, momentum theorem, turbulence and boundary layers are developed with ocean applications.
Prerequisite(s): MATH 527 with a minimum grade of D- and (CEE 650 with a minimum grade of D- or ME 608 with a minimum grade of D-).
Grade Mode: Letter Grading

OE 754 - Ocean Waves and Tides
Credits: 4
Small amplitude, linear wave theory, standing and propagating waves, wave energy, refraction, diffraction, transformation in shallow water, statistics of random seas, spectral energy density, generating wave time series using the random phase method forces on structures, Froude scaling of wave tank experiments, nonlinear effects. Description of tides as long waves, equilibrium tide, mathematical modeling including friction, nonlinear effects, and Coriolis forces, tidal analysis, the Great Bay Estuarine System as a case study.
Prerequisite(s): PHYS 407 with a minimum grade of D- and MATH 527 with a minimum grade of D- and MATH 528 with a minimum grade of D-.
Grade Mode: Letter Grading

OE 757 - Coastal Engineering and Processes
Credits: 3
Introduces small amplitude and finite amplitude wave theories. Wave forecasting by significant wave method and wave spectrum method. Coastal processes and shoreline protection. Wave forces and wave structure interaction. Introduction to mathematical and physical modeling.
Prerequisite(s): CEE 650 with a minimum grade of D- or ME 608 with a minimum grade of D-.
Grade Mode: Letter Grading

OE 758 - Design of Ocean Structures
Credits: 3
The foundational information necessary for the design of ocean structures. Topics include analysis and design of floating body, fixed body and moored line hydrostatics; wave forces on small and large bodies; dynamic response of floating bodies; and pile and gravity foundation geotechnics.
Prerequisite(s): (ME 526 with a minimum grade of D- or CEE 502 with a minimum grade of D-) and (ME 608 with a minimum grade of D- or CEE 650 with a minimum grade of D-) and OE 754 with a minimum grade of D- and MATH 527 with a minimum grade of D-.
Grade Mode: Letter Grading

OE 764 - Spectral Analysis of Geophysical Time Series Data
Credits: 4
This course considers basic exploratory techniques and in-depth spectral analysis for estimation with geophysical time series data, including calculations of confidence intervals and significance testing. This course prepares students for interpreting time series data with science and engineering applications. Topics include sampling theory, filtering, statistics, probability, spectral analysis, and empirical orthogonal functions. Students gain experience in code-writing for the analysis of time series data.
Prerequisite(s): MATH 426 with a minimum grade of D-.
Equivalent(s): ESCI 764
Grade Mode: Letter Grading

OE 765 - Underwater Acoustics
Credits: 3
An introduction to acoustics in the ocean. Fundamental acoustic concepts including the simple harmonic oscillator, waves on strings, and the acoustic wave equation; the sonar equation; sound generation and reception by underwater acoustic transducers and arrays; basics of sound propagation; reflection and scattering from ocean boundaries. Spring semester offered every year; satisfies core course requirement in Ocean Engineering.
Prerequisite(s): PHYS 408 with a minimum grade of D- and MATH 527 with a minimum grade of D-.
Grade Mode: Letter Grading

OE 771 - Geodesy and Positioning for Ocean Mapping
Credits: 4
The science and technology of acquiring, managing, and displaying geographically-referenced information; the size and shape of the earth, datums and projections; determination of precise positioning of points on the earth and the sea, including classical terrestrial-based methods and satellite-based methods; shoreline mapping, nautical charting and electronic charts.
Prerequisite(s): MATH 426 with a minimum grade of D- and PHYS 408 with a minimum grade of D-.
Equivalent(s): ESCI 771
Grade Mode: Letter Grading

OE 774 - Integrated Seabed Mapping Systems
Credits: 4
Overview of typical applications that involve mapping the sediment-water interface in the ocean and adjacent waters. Emphasis on defining the task-specific resolution and accuracy requirements. Fundamentals of acoustics relevant to seabed mapping. Progression through typical configurations involving single beam, sidescan, phase differencing and multibeam systems. Integration of asynchronous 3D position, orientation and sound speed measurements with sonar-relative acoustic travel time and angles. Analysis of impact of offsets, mis-alignments and latency in all integrated sensors.
Grade Mode: Letter Grading

OE 795 - Special Topics
Credits: 2-4
New or specialized courses and/or independent study. May be repeated barring duplication of subject.
Repeat Rule: May be repeated up to unlimited times.
Grade Mode: Letter Grading
OE 796 - Independent Study
Credits: 1-4
Independent study for exceptional students. Individual reading, writing, or laboratory work carried out under the tutelage of a faculty member. May be used as a technical elective for the ocean engineering major if taken for 3-4 credits.
Repeat Rule: May be repeated for a maximum of 4 credits.
Grade Mode: Letter Grading

OE 797 - Honors Seminar
Credits: 1
Course enrichment and/or additional independent study in subject matter pertaining to 600- or 700-level OE courses.
Attributes: Honors course
Repeat Rule: May be repeated for a maximum of 3 credits. May be repeated up to 3 times.
Grade Mode: Letter Grading

Faculty

https://ceps.unh.edu/ocean-engineering/faculty-staff-directory