MECHANICAL ENGINEERING (ME)

The Mechanical Engineering Program at UNH is accredited by the:

Engineering Accreditation Commission of ABET, http://www.abet.org

Mission

In support of the University and college missions, the Department of Mechanical Engineering is dedicated to educating the highest quality engineering professionals and leaders. Graduates will be prepared to creatively solve engineering problems through the use of analysis, computation, and experimentation. Students completing the program should be well-informed citizens who have the ability to grow intellectually and are able to solve new, challenging problems with self-confidence. It is the department's intent to maintain a general and flexible curriculum that prepares students for both industrial practice and graduate education.

Educational Objectives

The objective of the UNH Mechanical Engineering Program is to produce graduates who are ethical professionals and good citizens. As they progress in the first several years following graduation, they are expected to:

1. Use their engineering education and communication skills for success in:
 a. Technical careers in industry, academia, government, or other organizations;
 b. Graduate school in engineering or physical sciences;
 c. Nontechnical careers or education in areas such as law, medicine, business, public policy, secondary education, service industries, etc.;
 d. Careers involving management or entrepreneurship.

2. Exercise lifelong learning to:
 a. Pursue professional development opportunities in their disciplines;
 b. Develop new knowledge and skills;
 c. Pursue new areas of expertise or careers.

3. Use their engineering background to:
 a. Solve technical problems for societal benefit;
 b. Develop new knowledge and products that will promote sustainable economic and environmental developments to improve the quality of life;
 c. Promote the practice of engineering.

Mechanical engineering is a challenging profession and has two major emphases. The first is the general area of mechanical design, which involves all types of mechanical motion and the forces and energy that drive it. The other emphasis deals with energy generation and conversion and is grounded in the principles of the thermal and fluid sciences. Other subject areas, which support both emphases and are frequently part of designs and products, are the materials sciences, manufacturing, and control systems. All of these areas are included in the education and training of mechanical engineers. Ocean engineering is another focus area in our department which emphasizes solving engineering problems associated with the sustainable utilization of ocean resources and the scientific exploration and study of the ocean environment. Mechanical engineering requires significant study in mathematics, engineering computing, and basic sciences such as chemistry and physics, as well as basic engineering courses, before reaching the more specialized courses. Additional information can be found at the mechanical engineering website.

https://ceps.unh.edu/mechanical-engineering

Programs

- Mechanical Engineering Major (B.S.) (http://catalog.unh.edu/undergraduate/engineering-physical-sciences/programs-study/mechanical-engineering/mechanical-engineering-major-bs)
- Mechanical Engineering Minor (http://catalog.unh.edu/undergraduate/engineering-physical-sciences/programs-study/mechanical-engineering/mechanical-engineering-minor)

Courses

Mechanical Engineering (ME)

ME 441 - Introduction to Engineering Design and Solid Modeling
Credits: 4
Why are some products better than others? What is the definition of "better"? This course uses an inquiry-guided approach to explore the product design process via team design projects and laboratory exercises. Everyday products are examined from historical, societal, design, safety and manufacturing perspectives. Topics include ideation, sketching, design constraints, solid modeling, decision making, statistical quality control, manufacturing methods and engineering analysis. Students develop an appreciation for good design and the ability to communicate design ideas via 3-D solid models, written and oral reports. Prereq: MATH 418 or equivalent. Attributes: Inquiry (Discovery); Writing Intensive Course

ME 477 - Introduction to Solid Modeling
Credits: 1
Introduction to solid modeling and engineering drawings using computer-aided design software. For Mechanical Engineering students, this course can only be taken with permission as an alternative to the required ME 441 Introduction to Engineering Design and Solid Modeling for students with extensive engineering design experience (e.g., high school or another university course), an engineering project based program (e.g., FIRST Robotics or Project Lead the Way), or similar experience (e.g., working in the industry). Students should not take both ME 441 and ME 477. Lecture and Lab.

ME 503 - Thermodynamics
Credits: 3
Properties of a pure substance, work and heat, laws of thermodynamics, entropy, thermodynamic relations, cycles. Prereq: PHYS 407. Pre- or Coreq: CHEM 405; MATH 528.

ME 523 - Introduction to Statics and Dynamics
Credits: 3
Overview of statics and dynamics applying concepts to particles then to rigid bodies. Topics include two- and three-dimensional force systems; laws of equilibrium; analyses of trusses and frames; friction; relative motion; impulse-momentum principles; work-energy relationships. Prereq: MATH 426, PHYS 407. Not for ME majors.
ME 525 - Statics
Credits: 4
Introduces statics. Two- and three-dimensional force systems, the
concept of equilibrium, analysis of trusses and frames, centroids, bending
moment and shear force diagrams, and friction. Prereq: PHYS 407 and
MATH 426.
Equivalent(s): CEE 500, CIE 525, CIE 528
ME 526 - Mechanics of Materials
Credits: 3
Introduces strength of materials. Analysis of members under torsion,
axial, shear and bending stresses, superposition of stresses, stability of
columns. Prereq: ME 525. Writing intensive.
Attributes: Writing Intensive Course
Equivalent(s): CEE 501, CIE 526, CIE 529
ME 561 - Introduction to Materials Science
Credits: 4
The concepts of materials science and the relation of structure of
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
material properties. Atomic structure, bonding material transport,
mechanical properties of materials, solidification, phase diagrams,
mechanical properties of materials, solidification, phase diagrams,
ME 709 - Computational Fluid Dynamics
Credits: 3
Conservation of mass, momentum, and energy, discretization schemes, boundary and initial conditions, turbulence and turbulence models, two-equation models, CFD software such as OpenFOAM, best practice guidelines for CFD. The class incorporates the use and creation of Open Educational Resources (OER).

ME 712 - Waves in Fluids
Credits: 3
Linear and nonlinear dynamics of hyperbolic and dispersive wave systems with application to acoustic waves, surface and internal gravity waves, Rossby waves, and capillary waves. Key physical concepts include wave-generation mechanisms, wavelength and amplitude dispersion, group velocity and energy propagation, steady streaming, and mode interactions. Prereq: ME 608 or equivalent.

ME 724 - Vibration Theory and Applications
Credits: 4
Discrete vibrating systems. Linear system concepts; single-degree-of-freedom system with general excitation. Matrix theory and eigenvalue problems. Many degrees of freedom, normal mode theory for free and forced vibration. Numerical methods; introduction to continuous systems; applications to structural and mechanical systems. Prereq: ME 526; ME 627 or permission.

ME 727 - Advanced Mechanics of Solids
Credits: 4
Stress, strain, stress-strain relations, anisotropic behavior, introduction to elasticity, plane stress/strain, bending and torsion of members with general cross-sections introduction to thin plates and shells, energy methods. Prereq: ME 526 or permission.

ME 730 - Mechanical Behavior of Materials
Credits: 4
Elastic and inelastic behavior of materials in terms of micro- and macro-mechanics. Stress, strain, and constitutive relations related to recent developments in dislocation theory and other phenomena on the atomic scale and to the continuum mechanics on the macroscopic scale. Elasticity, plasticity, visoelasticity, creep, fracture, and damping. Anisotropic and heterogeneous materials. Prereq: ME 526; 561 or permission.

ME #731 - Fracture and Fatigue Engineering Material
Credits: 4
Reviews fundamentals of linear elastic fracture mechanics and strain energy release rate analyses. Discusses basic methods of design for prevention of failure by fast fracture and fatigue for metals, ceramics, and polymers with attention to the effect of material properties and subsequent property modification on each design approach. Prereq: ME 526; ME 561 or permission.

ME 735 - Mechanics of Composite Materials
Credits: 4

ME 743 - Satellite Systems, Dynamics, and Control
Credits: 3
General satellite systems with emphasis on spacecraft dynamics and control. Topics include general satellite information such as types of satellites, missions, and orbits, as well as satellite subsystems. Basic spacecraft dynamics and orbital mechanics topics are covered. Advanced topics include attitude and orbit estimation, and automatic attitude control. Prereq: ME 670 or permission.

ME 747 - Experimental Measurement and Modeling of Complex Systems
Credits: 4
Experimental measurements for evaluation, design, and control of mechanical, electrical, and thermal/fluid phenomena. Emphasizes the dynamic response of both sensors and systems and the interactions between physical processes. Experimental examples are drawn from mechanics, material science, thermal-fluid science and controls. Prereq: ME 646; ME 670. Writing intensive.
Attributes: Writing Intensive Course

ME 755 - Senior Design Project I
Credits: 2
Part I of this two-part sequence emphasizes problem definition, analysis, development of alternative concepts, decision-making processes, synthesis of an optimum solution and the development of a conceptual design. Lectures on these and other topics are combined with seminars given by professionals from industry, government, and academia. Related topics include ISO9000 quality systems, engineering management, design review process, engineering economics, team building and communications. Students are organized into project teams to develop a conceptual design. Formal design reviews are conducted. A formal proposal documents the semester’s work. Prereq: Senior standing in ME. Lab. Writing intensive.
Attributes: Writing Intensive Course
Equivalent(s): ME 656

ME 756 - Senior Design Project II
Credits: 2
Continuation of Senior Design Project I, in which the proposal submitted in the previous course is developed into a prototype system. Part II emphasizes the development, assembly, testing and evaluation of the system designed in Part I. Lectures and seminars focus on the prototype development process, design verification and industry practices. A formal report documents the semester’s work. Prereq: ME 755. Writing intensive.
Attributes: Writing Intensive Course
Equivalent(s): ME 656

ME 757 - Coastal Engineering and Processes
Credits: 3
Introduces small amplitude and finite amplitude wave theories. Wave forecasting by significant wave method and wave spectrum method. Coastal processes and shoreline protection. Wave forces and wave structure interaction. Introduces mathematical and physical modeling. Prereq: ME 608 or permission. (Also offered as CIE 757 and OE 757.)
Equivalent(s): CIE 757, OE 757

ME #760 - Physical Metallurgy I
Credits: 4
Introduction to physical metallurgy; dislocations; thermodynamics of materials, diffusion, phase transformations, and strengthening mechanisms in solids. Prereq: ME 561 or permission.
ME 761 - Diffraction and Imaging Methods in Materials Science
Credits: 4
Introduces x-ray diffraction and electron microscopy. Basic crystallography, reciprocal lattice, x-ray and electron diffraction, x-ray methods, transmission and scanning electron microscopy. Prereq: CHEM 403; PHYS 408 or permission. Lab.

ME #770 - Design with Microprocessors
Credits: 4
Basic operation of microprocessors and micro-controllers is explained, and interfacing these devices to sensors, displays and mechanical systems is explored. Topics include: number systems, architecture, registers, memory mapping, interrupts and interfacing for system design. Methods of programming and interfacing with mechanical/electrical systems are covered in class, and then implemented in lab. Prereq: ECE 537 or permission. Lab.

ME 772 - Control Systems
Credits: 4
Development of advanced control system design concepts such as Nyquist analysis, lead-lag compensation, state feedback, parameter sensitivity, controllability, observability, introduction to non-linear and modern control. Includes interactive computer-aided design and real-time digital control. Prereq: ME 747 or permission. (Also offered as ECE 772.) Lab.
Equivalent(s): ECE 772, EE 772

ME 773 - Electromechanical Analysis and Design
Credits: 4
Analysis and design of electromechanical systems using lumped parameter models and magnetic finite element analysis (FEA). Electrostatic and magnetic field equations are discussed and used to derive magnetic and electric lumped model elements. Brushless dc motor is analyzed using lumped models and FEA. Various drive types are discussed and the motor system analyzed to obtain torque-speed curves. Design principles are given and utilized in a design project. Prereq: ME 670 or permission.

ME 777 - Computer Aided Engineering
Credits: 4
In this course, modules of Solid Works (beyond its basic solid modeling capabilities) and other software is used to demonstrate how computer based tools can be used in engineering practice, in particular design analysis and optimization. Emphasis placed on using knowledge from past engineering courses to obtain theoretical calculations to compare with the results from the computer software package. Prereq: ME 526 Strength of Materials; ME 627 Mechanics III; ME 603 Heat Transfer; and ME 608 Fluid Dynamics (or equivalent).
Attributes: Writing Intensive Course

ME 782 - Industrial Skills and Engineering
Credits: 3
In this course, the principles of Lean Manufacturing and Value Stream Mapping (VSM) as pioneered by Toyota and now utilized by most leading manufacturers will be studied and applied. Lean Manufacturing principles will be taught with classroom instruction and a structured model factory exercise. Instruction on the theory of Value Stream Mapping (VSM) will be followed with an actual industrial VSM activity where a process will be studied and a Desired Future State defined with VSM methods. This factory floor activity will be done collaboratively with employees from a manufacturing company.

ME 785 - Solid Mechanics in Manufacturing
Credits: 4
Characterization of material properties are studied with emphasis on plastic deformation. Also, numerical approaches to solve for the forces, stresses, and strains in manufacturing processes are covered. In particular, two prominent mass production manufacturing areas, metal forming and cutting, are examined. Prereq: ME 561; ME 627.

ME 786 - Introduction to Finite Element Analysis
Credits: 4
Topics include basic matrix theory, potential energy approach, direct stiffness method, calculus of variations, development of finite element theory, and modeling techniques. Applications in solid mechanics, heat transfer, fluids, and electromagnetic devices, via both commercially available codes and student-written codes. Prereq: ME 526 or permission. Lab.
Equivalent(s): CIE 786

ME 795 - Special Topics
Credits: 1-4
New or specialized courses and/or independent study.
Repeat Rule: May be repeated for a maximum of 20 credits.

ME 797 - Honors Seminar
Credits: 1
Course enrichment and/or additional independent study in subject matter pertaining to a 600- or 700-level ME course other than ME 695, ME 696, ME 697, or ME 795.

Faculty
https://ceps.unh.edu/directory/all