MATHEMATICS MINOR

https://ceps.unh.edu/mathematics-statistics/program/minor/mathematics

Description

The mathematics minor will introduce you to central fields of pure mathematics, such as algebra, analysis and geometry. You'll be able to complement the core program requirements with an enticing selection of mathematics electives, including differential geometry, combinatorics, number and set theory, logic and topology. Tailor the minor to enhance a major such as business, economics, education or the sciences to prepare for your future career or graduate studies.

Students should declare their intent to earn a minor as early as possible and no later than the end of the junior year. During the final term, an application should be made to the dean of the student's major college to have the minor shown on the academic record. Students must consult with their major adviser and also the minor supervisor.

For further information, please contact the minor coordinator located on the department website.

Requirements

The minor requires a minimum of five MATH courses as detailed in the requirements. No more than 8.0 credits (or two courses) used by the student to satisfy major requirements may be used for the minor. Additional courses from the list of course electives may be utilized to meet the five-course minimum.

Credit toward the minor will be given only for courses passed with C- or better, and a 2.0 grade-point average must be maintained in courses for the minor. Courses taken on the pass/fail basis may not be used for the minor.

Code	Title	Credits
Required		
MATH 528	Multidimensional Calculus ¹	4
MATH 531	Mathematical Proof	4
MATH 761	Abstract Algebra	4
or MATH 767	One-Dimensional Real Analysis	
Select TWO of the following electives		8
MATH 760	Geometry	
MATH 761	Abstract Algebra	
MATH 763	Abstract Algebra II	
MATH 765	Introduction to Commutative Algebra and Algebraic Geometry	
MATH 767	One-Dimensional Real Analysis	
MATH 768	Real Analysis II	
MATH 769	Introduction to Differential Geometry	
MATH 770	Foundations of Number Theory	
MATH 772	Combinatorics	
MATH 776	Logic	
MATH 783	Set Theory	
MATH 784	Topology	
MATH 788	Complex Analysis	
Total Credite		20

This requirement may be satisfied by MATH 525 Linearity I and MATH 526 Linearity II.