MATHEMATICS MAJOR (B.S.)

Description

This program offers the strongest concentration in mathematics, requiring courses that are intended to prepare the student for graduate work in mathematics. Through a judicious choice of electives, students may design stronger pre-graduate programs, a program in applied mathematics, or slant the program toward a career in business or industry.

Requirements

Degree Requirements

Minimum Credit Requirement: 128 credits
Minimum Residency Requirement: 32 credits must be taken at UNH
Minimum GPA: 2.0 required for conferral*
Core Curriculum Required: Discovery & Writing Program Requirements
Foreign Language Requirement: No
All Major, Option and Elective Requirements as indicated.
*Major GPA requirements as indicated.

Major Requirements

In all courses used to satisfy the requirements for its major programs, the Department of Mathematics and Statistics requires that a student earn a grade of C- or better and have an overall grade-point average of at least 2.00 in these courses.

Degree Plan

First Year

Fall

MATH 425 Calculus I 4
Discovery Course 4
Discovery Course 4
MATH 400 Freshman Seminar 1
Credits 17

Spring

MATH 426 Calculus II 4
MATH 445 or CS 410P Mathematics and Applications with MATLAB 4
or CS 410C or Introduction to Scientific Programming/Python
MATH 527 Differential Equations with Linear Algebra 4
MATH 528 Multidimensional Calculus 4
MATH 531 Mathematical Proof 4
MATH 539 Introduction to Statistical Analysis 4
MATH 545 or MATH 645 Introduction to Linear Algebra 4
or Linear Algebra for Applications
MATH 645 Abstract Algebra 4
MATH 761 One-Dimensional Real Analysis 4
MATH 784 Topology 4
MATH 788 Complex Analysis 4
PHYS 407 General Physics I 4
PHYS 408 General Physics II 4
ENGL 401 First-Year Writing 4
Discovery Course 4
Credits 16

Second Year

Fall

MATH 528 Multidimensional Calculus 4
MATH 539 Introduction to Statistical Analysis 4
PHYS 407 General Physics I 4
Discovery Course 4
Credits 16

Spring

MATH 527 Differential Equations with Linear Algebra 4
MATH 531 Mathematical Proof 4
PHYS 408 General Physics II 4
Discovery Course 4
Credits 16

Third Year

Fall

MATH 545 or MATH 645 Introduction to Linear Algebra 4
or Linear Algebra for Applications
MATH 761 Abstract Algebra 4
Discovery Course 4
Credits 16

1 The full Linearity sequence, MATH 525 and MATH 526, may be used to replace the MATH 527, MATH 528, and MATH 545 / MATH 645 requirements.
MATH 525 may be used to replace the MATH 545 or MATH 645 requirement.
Mathematics Major (B.S.)

<table>
<thead>
<tr>
<th>Writing Intensive Course</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>16</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>MATH 763</th>
<th>Abstract Algebra II</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 767</td>
<td>One-Dimensional Real Analysis</td>
<td>4</td>
</tr>
<tr>
<td>Writing Intensive Course</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH Elective Course</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

| **Credits** | **16** |

Fourth Year

Fall

<table>
<thead>
<tr>
<th>MATH 784</th>
<th>Topology</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 797</td>
<td>Senior Seminar</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 799</td>
<td>Senior Thesis</td>
<td></td>
</tr>
<tr>
<td>MATH Elective Course</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Elective Course</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

| **Credits** | **16** |

Spring

<table>
<thead>
<tr>
<th>MATH 788</th>
<th>Complex Analysis</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH Elective Course</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Elective Course</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

| **Credits** | **16** |

Total Credits 129

Student Learning Outcomes

- Students can explain core concepts from a range of different branches of mathematics, including analysis, algebra, calculus and statistics.
- Students can correctly interpret mathematical definitions and construct simple proofs which use definitions and logical arguments to establish properties of mathematical objects.
- Students are aware that mathematical objects may have multiple representations and are able to select representations which clarify problems and simplify calculations.
- Students can recognize valid and invalid mathematical arguments.