APPLIED MATHEMATICS MAJOR: FLUID DYNAMICS OPTION (B.S.)

https://ceps.unh.edu/mathematics-statistics/program/be/applied-mathematics-fluid-dynamics-option

Description

This degree program prepares students for employment and/or graduate study in a variety of fields and research specializations in which mathematics plays a critical role in the solution of important scientific and technological problems.

Graduation Requirements

In all courses used to satisfy the requirements for its major programs, the Department of Mathematics and Statistics requires that a student earn a grade of C- or better and have an overall grade-point average of at least 2.00 in these courses.

Requirements

Major Requirements

Code Title Credits
MATH 425 Calculus I 4
MATH 426 Calculus II 4
MATH 445 Mathematics and Applications with MATLAB 4
or IAM 550 Introduction to Engineering Computing 4
MATH 527 Differential Equations with Linear Algebra 4
MATH 528 Multidimensional Calculus 4
MATH 531 Mathematical Proof 4
MATH 645 Linear Algebra for Applications 4
MATH 753 Introduction to Numerical Methods I 4
PHYS 407 General Physics I 4
PHYS 408 General Physics II 4
ME 503 Thermodynamics 3
ME 525 Statics 3
ME 539 Introduction to Statistical Analysis 4
ME 545 Linear Algebra for Applications 4
ME 608 Fluid Dynamics 3
ME 627 Dynamics 3
ME 647 Complex Analysis for Applications 4
ME 706 Computational Fluid Dynamics 4
ME 712 Waves in Fluids 4

One approved 700-level elective, selected in consultation with the academic advisor.

Total Credits: 30-32

Fluid Dynamics Option Requirements

Code Title Credits
PHYS 408 General Physics II 4
MATH 647 Complex Analysis for Applications 4
MATH 745 Foundations of Applied Mathematics I 4
ME 503 Thermodynamics 3
ME 525 Statics 3
or CEE 500 Statics for Civil Engineers 3
ME 608 Fluid Dynamics 3
ME 627 Dynamics 3

Select TWO of the following courses: 6-8

Degree Plan

Course Title Credits
First Year Fall
MATH 425 Calculus I 4
Inquiry Course 4
Discovery Course 4
Discovery Course 4
MATH 400 Freshman Seminar 1

Credits: 17

Spring
MATH 426 Calculus II 4
MATH 445 Mathematics and Applications with MATLAB 4
PHYS 407 General Physics I 4
ENGL 401 First-Year Writing 4

Credits: 16

Second Year Fall
MATH 528 Multidimensional Calculus 4
MATH 539 Introduction to Statistical Analysis 4
PHYS 408 General Physics II 4
ME 525 Statics 4

Credits: 16

Spring
MATH 527 Differential Equations with Linear Algebra 4
MATH 531 Mathematical Proof 4
MATH 645 Linear Algebra for Applications 4
ME 503 Thermodynamics 3

Credits: 15

Third Year Fall
MATH 647 Complex Analysis for Applications 4
MATH 745 Foundations of Applied Mathematics I 4
ME 608 Fluid Dynamics 3
ME 627 Dynamics 3

Credits: 14

Spring
Discovery Course 4
Discovery Course 4
Discovery Course 4

Credits: 16

Fourth Year Fall
MATH 753 Introduction to Numerical Methods I 4
Applied Mathematics Major: Fluid Dynamics Option (B.S.)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 707</td>
<td>4</td>
</tr>
<tr>
<td>Elective Course</td>
<td>4</td>
</tr>
<tr>
<td>Elective Course</td>
<td>4</td>
</tr>
<tr>
<td>Elective Course</td>
<td>2</td>
</tr>
<tr>
<td>Credits</td>
<td>18</td>
</tr>
</tbody>
</table>

Spring

Capstone: 4

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 797</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>MATH 798</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>MATH 799</td>
<td></td>
</tr>
</tbody>
</table>

Senior Seminar or Senior Project or Senior Thesis

700-level ME Elective Course 4

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective Course</td>
<td>4</td>
</tr>
<tr>
<td>Elective Course</td>
<td>4</td>
</tr>
<tr>
<td>Credits</td>
<td>16</td>
</tr>
</tbody>
</table>

Total Credits 128

Student Learning Outcomes

- Students recognize common mathematical notations and operations used in mathematics, science and engineering.
- Students can recognize and classify a variety of mathematical models including differential equations, linear and nonlinear systems of algebraic equations, and common probability distributions.
- Students have developed a working knowledge (including notation, terminology, foundational principles of the discipline, and standard mathematical models within the discipline) in at least one discipline outside of mathematics.
- Students are able to extract useful knowledge, both quantitative and qualitative, from mathematical models and can apply that knowledge to the relevant discipline.