ELECTRICAL AND COMPUTER ENGINEERING (ECE)

The Department of Electrical and Computer Engineering offers a B.S. in electrical engineering and a B.S. in computer engineering. Both degree programs are accredited by the:

Engineering Accreditation Commission of ABET
415 N. Charles Street
Baltimore, MD 21201
Telephone (410) 347-7700

Electrical engineers design, develop, and produce the electrical and electronic systems upon which modern society has come to depend: basic infrastructure, such as the electric power grid and fiber optic communication lines; public conveniences, such as maglev transporters and LED signs; consumer products, such as iPods and MP3 players; personal communication devices, such as smart phones; military systems, such as rail guns and laser weapons; instruments that can image the ocean floor or analyze the Earth’s atmosphere from satellites; and medical diagnostic machines like CAT and MRI scanners. Almost every facet of modern life is touched by the work of electrical engineers.

At UNH, the cornerstone of the electrical engineering program is the involvement of students in the solution of real-world problems. Students electing this major gain knowledge of advanced electronic circuit and system design through the use of computer-aided design tools, hardware prototyping, and hands-on laboratory testing.

Computers have become embedded in virtually every engineering system, including everyday items ranging from watches to automobiles. Computer engineering, traditionally a subset of electrical engineering, is a rapidly growing field that emphasizes the design, interfacing, hardware/software tradeoffs, and real-time applications of embedded computers. Students who elect this major will gain a knowledge of both hardware and software concepts, and will learn to design, build, and test systems containing digital computers.

ECE Department Mission

The mission of the department is to foster and advance knowledge in electrical and computer engineering.

The mission involves:

• teaching courses in electrical and computer engineering and related fields at the bachelor’s, master’s, and doctoral levels;
• advancing knowledge through research and scholarship;
• serving the state and nation by making the department’s intellectual resources available to industry and government agencies. The undergraduate EE and CE programs shall provide a firm foundation in electrical and computer engineering theory and practice, with a mix of laboratory and design experiences. The programs also shall foster teamwork and project management skills.

The graduate ECE program shall lead to the degrees of master of science in electrical and computer engineering and the doctor of philosophy in electrical and computer engineering. Research and scholarship are core components of the department’s mission and they directly impact undergraduate and graduate education. Success in obtaining funds to procure equipment and support research efforts is therefore an essential objective for the department.

The department recognizes the need to conduct periodic reviews and adjustments to meet the current and projected needs of the state and nation according to its mission objectives. The current mission was approved by the ECE faculty in March 2001 and again on October 27, 2009, approved by the ECE Student Advisory Board in October 2001, and ratified by the ECE Industrial Advisory Board in April 2002. The mission was reaffirmed by the ECE Industrial Advisory Board in November 22, 2004 and on October 26, 2009.

Electrical Engineering and Computer Engineering Program Educational Objectives

The Department of Electrical and Computer Engineering has adopted a set of program educational objectives that consists of statements describing the expected accomplishments of graduates during the first several years following graduation from either program:

Electrical Engineering Program Educational Objectives

Depth: To be effective in applying electrical engineering principles in engineering practice or for advanced study in electrical engineering.

Breadth: To have a productive career in the many diverse fields of electrical engineering such as analog engineering, bioengineering, communications, and electromagnetics and waves, or in the pursuit of graduate education in disciplines such as electrical engineering, medicine, law, or business.

Professionalism: To function effectively in the complex modern work environment with the ability to assume professional leadership roles.

Computer Engineering Program Educational Objectives

Depth: To be effective in applying computer engineering principles in engineering practice or for advanced study in computer engineering.

Breadth: To have a productive career in the many diverse fields of computer engineering such as digital engineering, bioengineering, security, communications, and embedded systems, or in the pursuit of graduate education in disciplines such as computer engineering, medicine, law, or business.

Professionalism: To function effectively in the complex modern work environment with the ability to assume professional leadership roles.

The electrical and computer engineering educational program objectives were approved by the ECE faculty and the ECE Student Advisory Board in September 2017 and then ratified by the ECE Industrial Advisory Board in October 2017.

Electrical Engineering and Computer Engineering Program Educational Outcomes

The Department of Electrical and Computer Engineering has adopted a set of program educational outcomes that consists of statements describing what students are expected to know and be able to do by the time of graduation, the achievement of which indicates that the student is equipped to achieve the program objectives. The current electrical
Engineering program educational outcomes and computer engineering program educational outcomes are:

- an ability to apply knowledge of mathematics, science, and engineering;
- an ability to design and conduct experiments, as well as to analyze and interpret data;
- an ability to design a system, component, or process to meet desired needs;
- an ability to function on multidisciplinary teams;
- an ability to identify, formulate, and solve engineering problems;
- an ability to communicate effectively;
- an understanding of professional and ethical responsibility;
- the broad education necessary to understand the impact of engineering solutions in a global and societal context;
- a recognition of the need for, and ability to engage in, lifelong learning;
- a knowledge of contemporary issues;
- an ability to use techniques, skills, and modern engineering tools necessary for engineering practice.

Electrical and computer program educational outcomes were last approved by the ECE faculty in September 2017, approved by the ECE Student Advisory Board in October 2017, and ratified by the ECE Industrial Advisory Board in October 2017. The program educational outcomes were reaffirmed by the ECE Industrial Advisory Board in October 2017.

Students contemplating a decision between the electrical engineering and computer engineering degree programs should consider both the similarities and differences of the two programs. The two curricula require the same foundational courses in mathematics, physics, analog and digital electronic circuits, and a capstone senior design project. The computer engineering degree program requires additional fluency in software development and advanced computer system and hardware design. The electrical engineering degree program requires advanced study in analog and mixed-signal electronic circuit and system analysis and design. Discovery Program requirements are identical for both degree programs.

https://ceps.unh.edu/ece

Courses

Electrical Computer Engineering (ECE)

ECE 401 - Perspectives in Electrical and Computer Engineering
Credits: 4
An introductory course for electrical and computer engineering majors that introduces incoming students to the fundamental concepts of analysis and design. Concepts are presented through an examination of real-world problems. Students are introduced to electrical and computer engineering problem solving and design through active learning techniques in lecture and in a laboratory setting. Provides a context for the electrical engineering and computer engineering curriculum and introduces the profession and activities of electrical and computer engineering. Lab.
Attributes: Inquiry (Discovery)
Equivalent(s): COMP 430, EE 401

ECE 444 - Bionics: Technology from Nature
Credits: 4
Bionics is the study of living systems with the intention of applying their principles to the design of useful technology for mankind. Students learn strategies to discover bio-inspired technology. The student investigates the fields of bio-inspired cyborgs, defense and attack mechanisms in biology leading to military applications including non-lethal weapons, bio-inspired sensors including brain-computer interfaces, bio-inspired robots, and animal and plants that generate energy for technology. Writing Intensive. Lab.
Attributes: Biological Science(Discovery); Discovery Lab Course; Inquiry (Discovery); Writing Intensive Course

ECE 537 - Introduction to Electrical Engineering
Credits: 4
Fundamentals of electrical engineering. Topics are circuit elements; signal waveforms; circuit laws and theorems; transfer functions; free, forced, and steady state responses; power calculations; amplifiers; and magnetic circuits. Non-ECE majors only. Prereq: PHYS 408. Pre- or Coreq: MATH 527. Lab.
Equivalent(s): EE 537

ECE 541 - Electric Circuits
Credits: 4
Linear passive circuits beginning with resistive circuits, power and energy relations, mesh and node analysis. Transient and steady-state behavior of simple circuits containing energy storage elements (capacitors, inductors). Introduction to linear active circuits using dependent source models and ideal op amps. Introduction to transfer function and frequency response concepts. For ECE majors only. Pre- or Coreq: MATH 426; PHYS 408. Lab.
Equivalent(s): EE 541

ECE 543 - Introduction to Digital Systems
Credits: 4
Fundamental analysis and design principles. Number systems, codes, Boolean algebra, and combinational and sequential digital circuits. Lab: student-built systems using modern integrated circuit technology and an introductory design session on a CAD workstation. Lab.
Equivalent(s): EE 543

Programs

- Computer Engineering Major (B.S.) (http://catalog.unh.edu/undergraduate/engineering-physical-sciences/programs-study/electrical-computer-engineering/computer-engineering-major-bs)
- Electrical Engineering Major (B.S.) (http://catalog.unh.edu/undergraduate/engineering-physical-sciences/programs-study/electrical-computer-engineering/electrical-engineering-major-bs)
- Electrical and Computer Engineering Minor (http://catalog.unh.edu/undergraduate/engineering-physical-sciences/programs-study/electrical-computer-engineering/electrical-computer-engineering-minor)
ECE 548 - Electronic Design I
Credits: 4
Introduction to electronic design for analog signal processing. Linear op amp circuits for amplification and filtering. Use of Laplace techniques for filter specification; simple passive and op amp filter realizations. Discrete active devices (FET and BJT): operating characteristics, biasing considerations, canonical amplifier configurations including differential amplifiers. Prereq: ECE 541. Lab.
Equivalent(s): EE 548

ECE 562 - Computer Organization
Credits: 4
Basic computer structure, including arithmetic, memory, control, and input/output units; the trade-offs between hardware, instruction sets, speed, and cost. Laboratory experiments involving machine language programming and I/O interfacing using microcomputers. Prereq: CS 410 or CS 415; ECE 543. Lab.

ECE 583 - Designing with Programmable Logic
Credits: 4
Design methodologies for implementing digital systems in programmable logic. Covers topics related to the design, implementation, and testing of programmable logic devices. Students are introduced to the Very-High-Speed Hardware Description Language (VHDL) entry language and simulation procedures, along with common logic synthesis tools. Programmable logic families, device architectures, and testing procedures are covered in detail. Laboratory exercises lead the student through the complete programmable logic design cycle. Each student is required to prototype a digital system starting with VHDL entry, functional and timing simulations, logic synthesis, device programming, logic probing, and systems verification. Prereq: ECE 562. Lab.
Equivalent(s): ECE 523, EE 523

ECE 602 - Engineering Analysis
Credits: 4
Equivalent(s): ECE 544, EE 544

ECE 603 - Electromagnetic Fields and Waves I
Credits: 4
Maxwell's equations in integral and differential form with applications to static and dynamic fields. Uniform plane waves in free space and material media. Boundary conditions; simple transmission line theory; parallel plate and rectangular waveguides; simple radiating systems. Prereq: PHYS 408; ECE 602.
Equivalent(s): ECE 667, EE 603

ECE 617 - Junior Laboratory I
Credits: 4
Application of laboratory instrumentation to the investigation of active and passive circuit characteristics; introduction to computer-aided design, analysis, and testing; development of report writing and oral presentation skills. Pre- or Coreq: ECE 633; ECE 651. Writing intensive.
Attributes: Writing Intensive Course
Equivalent(s): EE 617

ECE 618 - Junior Laboratory II
Credits: 4
Laboratory exercises in the design and analysis of active circuits, techniques of signal processing, and the properties of distributed circuits. Continued development of report writing and oral presentation skills. Prereq: ECE 617. Pre- or Coreq: ECE 603. Writing intensive.
Attributes: Writing Intensive Course
Equivalent(s): EE 618

ECE 633 - Signals and Systems I
Credits: 3
Equivalent(s): ECE 633H, EE 633

ECE 633H - Signals and Systems I/Honors
Credits: 4
Mathematical characterization of continuous-time systems using time- and frequency-domain concepts. Properties of linear systems described by ordinary differential equations. Fourier analysis of signals and system frequency response functions. Applications to communication and control systems. Introduction to system simulation using computer methods. Honors students will attend an additional one-hour meeting each week. Prereq: MATH 527. Pre- Coreq: MATH 645. permission required.
Equivalent(s): EE 633, EE 633H

ECE 634 - Signals and Systems II
Credits: 3
Transient response analysis of linear systems using Laplace transforms, application to feedback control systems. Introduction to discrete-time linear systems; system response determination using Z-transform; elementary design of digital filters and controllers. State variable formulation of dynamical systems. Prereq: ECE 633.
Equivalent(s): EE 634

ECE 647 - Random Processes and Signals in Engineering
Credits: 3
Emphasis on applied engineering concepts such as component failure, quality control, noise propagation. Topics include random variables, probability distributions, mean and variance, conditional probability, correlation, power spectral density. Prereq: MATH 426; ECE 602.
Equivalent(s): EE 647

ECE 647H - Random Processes and Signals/Honors
Credits: 4
Emphasis on applied engineering concepts such as component failure, quality control, noise propagation. Topics include random variables, probability distributions, mean and variance, conditional probability, correlation, power spectral density. Honors students attend an additional one-hour meeting each week. Prereq: MATH 426; ECE 602, permission required.
ECE 649 - Embedded Microcomputer Based Design
Credits: 4
An in-depth treatment of the design of embedded microcomputer systems. Topics include advanced architectures for embedded processors, hardware and software aspects of interfacing, handling interrupts, advanced programming including debugging of real time systems, embedded application implementations. Laboratory studies are required to reinforce theoretical and applied concepts in an actual embedded architecture. Prereq: ECE 583. Lab.

ECE 651 - Electronic Design II
Credits: 4
Design of fundamental circuit blocks in electronic systems. Multistage amplifiers; feedback systems and stability; power amplifiers. Nonlinear electronic circuits: oscillators, function generators; clippers and peak detectors; A/D and D/A conversion. Switching mode and logic circuits. Prereq: ECE 548.
Equivalent(s): EE 651

ECE 681 - Teaching Experience
Credits: 1
Credit for assisting in the instruction of undergraduate laboratories. Available on a limited basis to students selected by the department chairperson. May be repeated for credit up to a total of 4 credits.
Equivalent(s): EE 681

ECE 704 - Electromagnetic Fields and Waves II
Credits: 4
Provides an overview of electromagnetics modeling by covering commonly-used numerical solutions to electromagnetics problems. Computational approaches to be covered include the Method of Moments (MoM) for both static and dynamic fields, iterative solutions to Laplace's equations. Finite Element Methods, high-frequency solutions, and the Finite-Difference, Time-Domain techniques (FDTD). Prereq: ECE 603.
Equivalent(s): EE 704

ECE 711 - Digital Systems
Credits: 4
Principles, procedures and tools related to the design, implementation and testing of microprocessor-based embedded systems. Students prototype a complete embedded system using CAD tools, application specific integrated circuits, printed circuit board technology, and modern diagnostic/testing procedures and tools. Projects are designed to introduce diverse digital technologies. Lab.
Equivalent(s): EE 711

ECE 714 - Introduction to Digital Signal Processing
Credits: 4
Introduction to digital signal processing theory and practice, including coverage of discrete time signals and systems, frequency domain transforms and practical spectral analysis, digital filter terminology and design, and sampling and reconstruction of continuous time signals. Laboratory component providing an introduction to DSP design tools and real-time algorithm implementation. Prereq: ECE 633. Lab.
Equivalent(s): ECE 714H, EE 714

ECE 715 - Introduction to VLSI
Credits: 4
Principles of VLSI (Very Large Scale Integration) systems at the physical level. CMOS circuit and logic design, CAD tools, CMOS system case studies. Students exercise the whole development cycle of a VLSI chip: design and layout with the up-to-date commercial EDA tools. An IA (continuous grading) grade is given at the end of semester I. Lab.

ECE 717 - Introduction to Digital Image Processing
Credits: 4
Digital image representation; elements of digital processing systems; multidimensional sampling and quantization; image perception by humans, image transformations including the Fourier, the Walsh, and the Hough Transforms; image enhancement techniques including image smoothing, sharpening, histogram equalization, and pseudo color processing; image restoration fundamentals; image compression techniques, image segmentation and use of descriptors for image representation and classification. Prereq: ECE 633; ECE 647. Lab.
Equivalent(s): EE 717

ECE 724 - Ubiquitous Computing Fundamentals
Credits: 4
Ubiquitous computing, or ubicomp, explores embedded, interconnected computing devices that are part of everyday objects and activities. This course takes an interdisciplinary look at the foundations of ubiquitous computing. Topics include software and hardware for ubicomp, human-computer interaction in ubicomp, and issues related to privacy and security in ubicomp. Students undertake a research project inspired by the material. Registration by permission only.

ECE #734 - Network Data Communications
Credits: 4
Introduces basic concepts related to data transmission equipment and physical interfaces, data communication protocols, and the Open System Interconnection (OSI) Reference Model. Includes physical layer hardware, signaling schemes, protocol packets, computer interfaces, error detection, signal integrity, and data transmission protocols relative to both wired and wireless networks. Introduces both logical and wide-area networks, and how a networking system is constructed, tested, and managed. Network design and testing exercises. Prereq: ECE 633; ECE 649. Lab. Electrical Engineering majors only.
Equivalent(s): EE 734H, EE 734

ECE 757 - Fundamentals of Communication Systems
Credits: 4
Spectra of deterministic and random signals; baseband and bandpass digital and analog signaling techniques; transmitter and receiver architectures; performance analysis of digital and analog signaling in additive noise channels; carrier and symbol timing synchronization methods. Prereq: ECE 633; ECE 649. Lab.
Equivalent(s): EE 757

ECE 758 - Communication System Design
Credits: 4
System- and circuit-level design and implementation of communication hardware including: mixers, RF amplifiers, filters, oscillators and frequency synthesizers, modulators and detectors, carrier and symbol timing recovery subsystems. Issues in software-defined radio transmitter and receiver implementation. Communication link engineering including antenna selection and channel impairment effects. Prereq: ECE 651; ECE 757. Lab.
Equivalent(s): EE 758

ECE #760 - Introduction to Fiber Optics
Credits: 4
Basic physical and geometric optics; solution of Maxwell's equations for slab waveguides and cylindrical waveguides, of both step index and graded index profiles; modes of propagation and cutoff; polarization effects; ground and phase velocity; ray analysis; losses; fabrication; sources; detectors; couplers; splicing; cabling; applications; system design. Prereq: ECE 603. Lab.
Equivalent(s): EE 760
ECE 772 - Control Systems
Credits: 4
Development of advanced control system design concepts such as Nyquist analysis; lead-lag compensation; state feedback; parameter sensitivity; controllability; observability; introduction to non-linear and modern control. Includes interactive computer-aided design and real-time digital control. Prereq: ECE 634. Lab. (Also offered as ME 772.)
Equivalent(s): EE 772, ME 772

ECE 775 - Applications of Integrated Circuits
Credits: 4
Equivalent(s): EE 775

ECE #777 - Collaborative Engineering
Credits: 4
Study of processes in which engineers from diverse disciplines cooperate to specify, design, manufacture, test, market, and maintain a product. Classes are organized in both technical and nontechnical flexible modules. Technical topics are advanced and relevant to project being developed, such as related research, technology, design methodology, and CAD tools. Nontechnical topics include ISO 9000 quality system, engineering management, budget considerations, building, communication and leadership skills, and concurrent engineering principles. The course utilizes collaborative engineering by team development of an engineering project, often a research oriented proof-of-concept prototype. Prereq: permission. Lab. Also listed as TECH 750.
Equivalent(s): EE 777

ECE 784 - Biomedical Instrumentation
Credits: 4
Principles of physiological and biological instrumentation design including transducers, signal conditioning, recording equipment, and patient safety. Laboratory includes the design and use of instrumentation for monitoring of electrocardiogram, electromyogram, electroencephalogram, pulse, and temperature. Current research topics, such as biotelemetry, ultrasonic diagnosis, and computer applications. Prereq: ECE 651. Lab.
Equivalent(s): EE 784

ECE 791 - Senior Project I
Credits: 2
First semester of the capstone design experience. Students develop project plans, and prepare and present written and oral project proposals. The project plans must include aspects of design, implementation and evaluation. At the end of the semester, students prepare a written progress report. Prereq: ECE 694; ECE senior standing. Writing intensive.
Attributes: Writing Intensive Course
Equivalent(s): ECE 791H

ECE 791H - Senior Honors Project I
Credits: 4
First semester of the capstone honors senior thesis research. Students develop research plans, prepare and present written and oral research proposals. The research plans must include aspects of design, implementation and evaluation, similar to ECE 791. However, honors thesis research must also include independent research beyond the normal scope of ECE 791. At the end of the semester students prepare a written progress report. Prereq: ECE 694; ECE senior standing, permission required. Writing intensive.
Attributes: Writing Intensive Course
Equivalent(s): ECE 791

ECE 792 - Senior Project II
Credits: 2
This course requires the completion of the capstone design experience began in ECE 791. At the end of the semester students prepare written final project reports, and present their results in a research poster session. Prereq: ECE 791. Writing intensive.
Attributes: Writing Intensive Course
Equivalent(s): ECE 792H

ECE 792H - Senior Honors Project II
Credits: 4
This course requires the completion of the capstone honors thesis research begun in ECE 791H. At the end of the semester students prepare honors theses, and present their research results in a research poster session. ECE 791H/792H fulfills the requirement of one professional elective. Prereq: ECE 791H, permission required. Writing intensive.
Attributes: Writing Intensive Course
Equivalent(s): ECE 792

ECE 795 - Electrical and Computer Engineering Projects
Credits: 1-4
Laboratory course. Student undertakes a project of mutual interest with an ECE faculty advisor. A written final report must be filed with the ECE Department. Prereq: permission.
Equivalent(s): EE 795

ECE 796 - Special Topics
Credits: 1-4
New or specialized courses and/or independent study. Prereq: permission. 1 to 4 credits some sections may use credit/fail grading.
Equivalent(s): EE 796

Faculty

Electrical and Computer Engineering Faculty (https://ceps.unh.edu/electrical-computer-engineering/faculty-staff-directory)