CHEMISTRY (CHEM)

Chemistry is a dynamic, an extremely creative, and yet also a practical discipline. Chemists analyze and quantitate, like when testing environmental or forensic samples; they measure specific characteristics of substances, like the defects present in a material, or the optical properties of atmospheric particles; they design and synthesize new substances, like antibiotics, catalysts for hydrogen production, and polymers for flexible electronics; they also generate models and theories that can explain what happens in the laboratory or in Nature. Chemistry is integral to modern science and, ultimately, most phenomena in biology, engineering, environmental science, geology, materials science, and medicine can be described in terms of the chemical and physical behavior of atoms and molecules—because of this, chemistry is often called "The Central Science". Chemists are vital members of the interdisciplinary teams tackling the complicated problems facing our world, including issues in energy, health, security, and defense. Chemists are essential in developing the technologies and materials that support modern life!

The study of chemistry provides students with the critical thinking and problem-solving skills necessary to be successful in a wide variety of careers. You’ll find chemists in many industries, including agricultural/food products, biotechnology, coatings, materials, paper, personal care products, petrochemicals, pharmaceuticals, plastics, renewable energy, semiconductors, and solar cells. Chemists are also involved in environmental and health-related sciences, making public policies, patent law and intellectual property, and educating future generations of scientists.

Students are also well-prepared for graduate-level work in chemistry, chemical biology, chemical physics, biochemistry, biophysics, materials chemistry, and other related fields. Students who excel in undergraduate chemistry coursework are often able to obtain funding for their graduate work through teaching or research assistantships and fellowships. Chemistry majors have also been successful in a variety of professional programs where they have studied medicine, pharmacy, dentistry, veterinary medicine, business, or law.

The chemistry program at The University of New Hampshire is small enough to be personal, but broad enough to provide excellent opportunities for challenge and growth. Students interested in pursuing chemistry as an undergraduate discipline have two options available to them. These are the Bachelor of Science in Chemistry (B.S.) degree and a Bachelor of Arts (B.A.) degree. The B.S. Chemistry degree is certified by the American Chemical Society (https://www.acs.org/content/acs/en/about/governance/committees/training/acsgeneral.html); the B.A. degree may also lead to ACS certification, depending on program plan. Since the required courses for each degree program are very similar in the first and second years, it is easy to change from one program to another. A chemistry faculty adviser is assigned to a student once she/he enters the program. The student’s adviser provides academic guidance concerning the choice of courses to meet both major and university requirements.

https://ceps.unh.edu/chemistry

Programs

- Chemistry Major (B.A.) (http://catalog.unh.edu/undergraduate/engineering-physical-sciences/programs-study/chemistry/chemistry-major-ba)
- Chemistry Major (B.S.) (http://catalog.unh.edu/undergraduate/engineering-physical-sciences/programs-study/chemistry/chemistry-major-bs)
- Chemistry Minor (http://catalog.unh.edu/undergraduate/engineering-physical-sciences/programs-study/chemistry/chemistry-minor)

Courses

Chemistry (CHEM)

CHEM 400 - Freshman Seminar
Credits: 1
An introduction to the chemistry profession. Talks and workshops on the career of a chemist in academia, industry, medicine, law, teaching and government. Required for chemistry majors. Cr/F.
Repeat Rule: May be repeated for a maximum of 2 credits.

CHEM 403 - General Chemistry I
Credits: 4
Fundamental laws and concepts applied to nonmetals, metals, and their compounds. For students who plan to take further chemistry courses. Previous chemistry recommended. Knowledge of algebra, exponentials, and logarithms required. Special fee. Lab. Cannot be taken for credit if credit received for CHEM 405. Required for chemistry majors.
Attributes: Discovery Lab Course; Physical Science(Discovery)
Equivalent(s): CHEM 405

CHEM 404 - General Chemistry II
Credits: 4
Fundamental laws and concepts applied to nonmetals, metals, and their compounds. For students who plan to take further chemistry courses. Previous chemistry recommended. Knowledge of algebra, exponentials, and logarithms required. Required for chemistry majors. Special fee. Lab. Prereq: CHEM 403 and 403L.
Attributes: Discovery Lab Course; Physical Science(Discovery)
Equivalent(s): CHEM 404E, CHEM 404H, CHEM 405, CHEM 415, CHEM 416

CHEM 404H - Honors/General Chemistry II
Credits: 4
Fundamental laws and concepts applied to nonmetals, metals, and their compounds. For students who plan to take further chemistry courses. Previous chemistry recommended. Knowledge of algebra, exponentials, and logarithms required. Required for chemistry majors. Special fee. Lab. Prereq: CHEM 403 and 403L. Honors course is designed for students who have enrolled in the honors degree program. Special fee. Lab. Cannot be taken for credit if credit received for CHEM 402. Prereq: CHEM 403.
Attributes: Discovery Lab Course; Physical Science(Discovery)
Equivalent(s): CHEM 402, CHEM 404, CHEM 405, CHEM 415, CHEM 416
CHEM 405 - Chemical Principles for Engineers
Credits: 4
Basic principles; atomic structure, bonding, equilibria, and thermodynamics. Prereq: one year of high school chemistry, algebra, and knowledge of logarithms. Cannot be taken for credit if credit received for CHEM 403 and CHEM 404. Required for chemical engineering, mechanical engineering, electrical and computer engineering, environmental engineering: industrial majors. Not applicable for credit for majors in chemistry or biochemistry.
Attributes: Discovery Lab Course; Physical Science(Discovery)
Equivalent(s): CHEM 401, CHEM 403, CHEM 404, CHEM 404H, CHEM 409, CHEM 413, CHEM 414

CHEM 408 - Green Goggles: Introduction to Green Chemistry
Credits: 4
In this course, we investigate the principles and practice of Green Chemistry as they connect to real world examples. Green Chemistry is the field of science that uses a principle-based approach to design chemical reactions and processes to make them more sustainable. In exploring green chemistry, many of the fundamental concepts of a general chemistry course are investigated. Some topics include use of renewable feedstocks, atom economy, catalysis, waste prevention, and design for degradation.
Attributes: Physical Science(Discovery)
Equivalent(s): CHEM 444G

CHEM 409 - Chemistry and Society
Credits: 4
Elementary survey of chemistry; integrates principles and applications. For students who do not intend to take any other chemistry courses and those interested in satisfying a general education science requirement. Not a prerequisite for any other chemistry courses. (Not offered every year.) Chemistry majors are excluded from taking this course.
Attributes: Physical Science(Discovery); Inquiry (Discovery)

CHEM 411 - Introductory Chemistry for Life Sciences
Credits: 4
Fundamental and pragmatic aspects of chemistry, particularly as foundation for nutritional biochemistry. Includes basics of bonding, acid/base behavior, reaction energy, intermolecular forces, stoichiometry, and equilibrium. High school chemistry not required. This course is not a replacement to CHEM 403 and is not an acceptable pre-requisite for CHEM 404. Special fee. Only open to the following majors: Dairy Management, Wildlife & Conservation Biology, Zoology, Nutrition, Nutr. Dietetics, Nutr. Nutrition & Wellness, Sust Agriculture & Food Systems, and Environmental Horticulture.
Attributes: Discovery Lab Course; Physical Science(Discovery)

CHEM 413 - General Chemistry Lecture I
Credits: 3
Fundamental laws and concepts applied to nonmetals, metals, and their compounds. For students who plan to take further chemistry courses. Previous chemistry recommended. Knowledge of algebra, exponentials, and logarithms required. Special permission required. Not offered every summer. Cannot be taken for credit if credit received for CHEM 401, CHEM 403, CHEM 405, or CHEM 409.
Equivalent(s): CHEM 401, CHEM 403, CHEM 405, CHEM 409

CHEM 414 - General Chemistry Lab I
Credits: 1
Lab application of fundamental laws and concepts applied to nonmetals, metals and their compounds. Previous general chemistry lecture required. Special permission. Special fee. Not offered every summer. Cannot be taken for credit if credit received for CHEM 401, CHEM 403, CHEM 405, or CHEM 409. Not open to Chemistry majors.
Equivalent(s): CHEM 401, CHEM 403, CHEM 405, CHEM 409

CHEM 415 - General Chemistry Lecture II
Credits: 3
Fundamental laws and concepts applied to nonmetals, metals, and their compounds. For students who plan to take further chemistry courses. Previous chemistry recommended. Knowledge of algebra, exponentials, and logarithms required. Cannot be taken for credit if credit received for CHEM 402 or CHEM 404. Prereq: CHEM 403 or CHEM 413.
Equivalent(s): CHEM 402, CHEM 404, CHEM 404H

CHEM 416 - General Chemistry Lab II
Credits: 1
Lab application of fundamental laws and concepts applied to nonmetals, metals, and their compounds. Previous general chemistry lecture required. Special permission. Special fee. Not offered every summer. Cannot be taken for credit if credit received for CHEM 402 or CHEM 404. Prereq: CHEM 403 or CHEM 414. Not open to Chemistry majors.
Equivalent(s): CHEM 402, CHEM 404, CHEM 404H

CHEM 444A - Fire and Ice
Credits: 4
Embodies a focus on the perception, movement, creation, understanding, and everyday use of heat. Examines historical evolution and controversy regarding the concept of heat across physical and life sciences.
Attributes: Physical Science(Discovery); Inquiry (Discovery)

CHEM 444B - Symmetry in Nature, The Arts, and Daily Life
Credits: 4
The elements of symmetry and its occurrence and role in nature (bilateral symmetry in butterflies and animals; cylindrical symmetry in trees and volcanoes; helical symmetry in shells, proteins, and DNA; the role of symmetry in design of medicines); its role in art and design (textiles, advertising); and in our lives (design of houses, chairs, scissors). The course is non-mathematical and is open to students having little background in science. Writing intensive.
Attributes: Physical Science(Discovery); Inquiry (Discovery); Writing Intensive Course
Equivalent(s): TECH 444

CHEM 444O - The Story of Oxygen
Credits: 4
The course will deal with a single element - oxygen. We will examine the role that oxygen compounds play in the atmosphere, including the ozone layer, global warming, and smog. In addition, the history of oxygen can be seen as emblematic of the development of chemistry from the mystical philosophy of alchemy to a quantitative science. We will discuss the development of chemistry by considering the history of our understanding of the element.
Attributes: Physical Science(Discovery); Inquiry (Discovery)

CHEM 496 - Freshman Independent Study
Credits: 1-8
Independent study for students who have not had organic chemistry. Designed for students who wish to pursue independent study topics, but do not have the experience to pursue lab research. Cannot be counted toward the major. (Not offered every year.)
CHEM 501 - Peer-led Team Learning in Chemistry
Credits: 2
Initial experience as peer instructional leader. Practical application of theories of cognition, group dynamics, learning, and motivation to helping other students learn chemistry in general chemistry. Requires one weekly meeting with students. Permission required. Prereq: CHEM 403 or CHEM 404.

CHEM 502 - Advanced Peer-led Team Leadership in Chemistry
Credits: 1
Development and assessment of leadership skills. Practical application of theories of cognition, group dynamics, learning, and motivation to helping other students learn chemistry in general chemistry. Requires one weekly meeting with students. Permission required. Prereq: CHEM 403 and CHEM 501.

CHEM 503 - Mentoring for Peer Team Learning
Credits: 1
Experienced leaders mentor a new leader in implementation of PLTL model, including initial co-leading and observational formative assessment. Mentors report on mentee development, visit other experienced leaders, and provide a final evaluation. Mentors lead their own weekly group and assist part-time in the PLTL leader meetings. Prereq: CHEM 501.

CHEM 517 - Quantitative Analysis
Credits: 4
Combines lecture, laboratory, and in-class problem solving to study solubility, acid-base, redux, and complexation reactions and their application for quantitative chemical measurements. Prereq: CHEM 404 or CHEM 405. Lab.
Co-requisite: CHEM 518
Equivalent(s): CHEM 406

CHEM 518 - Quantitative Analysis Laboratory
Credits: 1
Volumetric methods with an emphasis on technique; separations; and selected instrumental methods such as potentiometry, spectrophotometry, atomic absorption, and gas chromatography. Prereq: CHEM 404 or CHEM 405. Special fee.
Co-requisite: CHEM 517
Equivalent(s): CHEM 407

CHEM 545 - Organic Chemistry
Credits: 3
Introductory study of carbon compounds for those who desire a brief terminal course. This course is a one semester course only. CHEM 545 and 546 are not applicable for pre-med, pre-vet, pharmacological majors or minors requiring a year long course of organic. CHEM 545 and CHEM 546 cannot be used to meet semester 1 of the year long-organic course (CHEM 547 or CHEM 651). Prereq: CHEM 403 and CHEM 403L and CHEM 404 and CHEM 404L or CHEM 405. CHEM 545 and CHEM 546L are co-requisites and must be taken together.
Co-requisite: CHEM 546
Equivalent(s): CHEM 402, CHEM 547, CHEM 548, CHEM 651, CHEM 652

CHEM 546 - Organic Chemistry Laboratory
Credits: 2
Introductory study of carbon compounds for those who desire a brief terminal course. Prereq: CHEM 404 or CHEM 405. Lab.
Co-requisite: CHEM 545

CHEM 547 - Organic Chemistry I
Credits: 3
Principal classes of organic compounds, aliphatic and aromatic; class reactions and structural theory. Intended primarily for chemistry and biochemistry majors. Prereq: CHEM 404; CHEM 405/or permission. Students receiving credit for CHEM 547-548 may not receive credit for either CHEM 545 or CHEM 651 and CHEM 652.
Co-requisite: CHEM 549
Equivalent(s): CHEM 545, CHEM 651, CHEM 652

CHEM 548 - Organic Chemistry II
Credits: 3
Principal classes of organic compounds, aliphatic and aromatic; class reactions and structural theory. Intended primarily for chemistry and biochemistry majors. Prereq: CHEM 404; CHEM 405; and CHEM 547/or permission. Students receiving credit for CHEM 547 and CHEM 548 may not receive credit for either CHEM 545 or CHEM 651 and CHEM 652. Only listed majors allowed: Chemistry (BS), Chemistry (BA), Bchmmolcebio, and Biochemistry.
Co-requisite: CHEM 550
Equivalent(s): CHEM 545, CHEM 651, CHEM 652

CHEM 549 - Organic Chemistry Laboratory
Credits: 2
Special fee. Lab.
Co-requisite: CHEM 547
Equivalent(s): CHEM 653

CHEM 550 - Organic Chemistry Laboratory
Credits: 2
Special fee. Lab.
Co-requisite: CHEM 548
Equivalent(s): CHEM 654

CHEM 574 - Chemistry Across the Periodic Table
Credits: 4
Ninety-eight elements form the building blocks of every substance on Earth—they are elegantly organized into what we now call The Periodic Table. This course will discuss the structure/property/reactivity patterns inherent in The Periodic Table, their origins according to the quantum mechanical model of the atom, and how they are manifest in current research advancements and modern applications of main group element chemistry, transition metal chemistry, and the chemistry of solids and materials. Prereq: CHEM 404 or CHEM 405.
Attributes: Inquiry (Discovery)

CHEM 576 - Experimental Inorganic Chemistry
Credits: 2
This laboratory course is an introduction to synthetic methods in inorganic chemistry and the study of the elements across the periodic table. This course will emphasize the use of spectroscopic and analytical techniques specifically aimed at characterizing and identifying inorganic compounds, such as multi-nuclear NMR, UV/Vis, IR spectroscopy, X-ray diffraction and mass spectrometry. An introduction to scientific writing will be included. Special fee. CHEM 574 is a pre- or co-requisite.
CHEM 651 - Organic Chemistry I
Credits: 3
Principal classes of organic compounds, aliphatic and aromatic, class reactions and structural theory. Intended primarily for pre-healing arts, biological science, and health science students. Prereq: CHEM 404; CHEM 405; or permission. Students receiving credit for CHEM 651 and CHEM 652 may not receive credit for either CHEM 545 or CHEM 547 and CHEM 548.
Co-requisite: CHEM 653
Equivalent(s): CHEM 545, CHEM 547, CHEM 548

CHEM 652 - Organic Chemistry II
Credits: 3
Principal classes of organic compounds, aliphatic and aromatic, class reactions and structural theory. Intended primarily for pre-healing arts, biological science, and health science students. Prereq: CHEM 404; CHEM 405; and CHEM 651/or permission. Students receiving credit for CHEM 651 and CHEM 652 may not receive credit for either CHEM 545 or CHEM 547 and CHEM 548.
Co-requisite: CHEM 654
Equivalent(s): CHEM 545, CHEM 547, CHEM 548

CHEM 652A - Organic Chemistry II
Credits: 3
Principal classes of organic compounds, aliphatic and aromatic, class reactions and structural theory. Intended primarily for pre-healing arts, biological science, and health science students. Prereq: CHEM 404; CHEM 405; and CHEM 651/or permission. Students receiving credit for CHEM 651 and CHEM 652 may not receive credit for either CHEM 545 or CHEM 547 and CHEM 548. This course is for Chemical Engineers only.

CHEM 653 - Organic Chemistry Laboratory
Credits: 2
Special fee. Lab.
Co-requisite: CHEM 651
Equivalent(s): CHEM 549

CHEM 654 - Organic Chemistry Laboratory
Credits: 2
Special fee. Lab.
Co-requisite: CHEM 652
Equivalent(s): CHEM 550

CHEM 683 - Physical Chemistry I
Credits: 3
Topics may be chosen from: properties of gases, liquids, and solids; thermochemistry, and thermodynamics; chemical equilibria; reaction rates; quantum chemistry and spectroscopy. Prereq: CHEM 404 or CHEM 405; MATH 426. Pre- or Coreq: PHYS 402 or PHYS 407. Co-requisite: CHEM 685 and CHEM 684. Special fee.
Co-requisite: CHEM 683

CHEM 684 - Physical Chemistry I
Credits: 2
Measurement of thermodynamic properties, chemical kinetics, and methods of determining the structure of matter. Prereq: CHEM 404 or 405; MATH 426. Pre- or Coreq: PHYS 407 or PHYS 402. Coreq: CHEM 683 and CHEM 684. Special fee.
Co-requisite: CHEM 683

CHEM 685 - Physical Chemistry Laboratory
Credits: 2
Measurement of thermodynamic properties, chemical kinetics, and methods of determining the structure of matter. Prereq: CHEM 404 or 405; MATH 426. Pre- or Coreq: PHYS 407 or PHYS 402. Coreq: CHEM 683 and CHEM 684. Special fee.
Co-requisite: CHEM 683

CHEM 686 - Physical Chemistry Laboratory
Credits: 2
Measurement of thermodynamic properties, chemical kinetics, and methods of determining the structure of matter. Prereq: CHEM 404 or 405; MATH 426. Pre- or Coreq: PHYS 407 or PHYS 402. Coreq: CHEM 683 and CHEM 684. Special fee.
Co-requisite: CHEM 684
Equivalent(s): CHEM 686W

CHEM 696 - Independent Study
Credits: 1-4
For exceptional students. Individual reading, writing, or laboratory work carried out under the tutelage of a faculty member. May be used to replace specific required courses in chemistry. Prereq: approval of the adviser and department chairperson. Credits to be arranged.

CHEM 708 - Spectroscopic Investigations of Organic Molecules
Credits: 3
Identification and structural analysis of chemical compounds by selected instrumental methods. Typical topics include proton and carbon-13 NMR spectroscopy, IR and UV spectroscopy, and mass spectrometry.

CHEM 755 - Advanced Organic Chemistry
Credits: 3
Methods of synthesis and determination of structure, including stereochemistry of complex organic compounds. Prereq: CHEM 548 or CHEM 652 or equivalent.

CHEM 756 - Advanced Organic Chemistry Laboratory
Credits: 2 or 3
Synthesis and structural determination of complex organic compounds, techniques for the separation, determination of purity, and identification of compounds by spectroscopic and chemical means. Coreq for CHEM majors: 755.
Co-requisite: CHEM 755
Equivalent(s): CHEM 756W

CHEM 756W - Advanced Organic Chemistry Laboratory
Credits: 2 or 3
Synthesis and structural determination of complex organic compounds, techniques for the separation, determination of purity, and identification of compounds by spectroscopic and chemical means. Coreq for CHEM majors: 755.
Co-requisite: CHEM 755
Equivalent(s): CHEM 756W

CHEM 762 - Instrumental Methods of Chemical Analysis
Credits: 3
Theory, instrumentation, and application of methods such as atomic absorption, coulometry, emission spectrography, gas and liquid chromatography, polarography, potentiometry, IR and UV-VIS absorption spectrophotometry, and mass spectrometry to chemical analysis. Prereq: CHEM 406 or CHEM 517; CHEM 684 as a pre- or co requisite/or permission.
Co-requisite: CHEM 763

CHEM 763 - Instrumental Methods of Chemical Analysis Laboratory
Credits: 2 or 3
Experimental parameters, error analysis, and applications of the methods covered in CHEM 762. Special fee.
Co-requisite: CHEM 762
Equivalent(s): CHEM 763W
CHEM 774 - Inorganic Chemistry
Credits: 3
Basic theoretical concepts and their applications to inorganic reactions and compounds. Prereq: organic chemistry; physical chemistry/ or permission.

CHEM 775 - Inorganic Chemistry Laboratory
Credits: 2
In-depth instruction of selected techniques of synthesis and characterization of inorganic compounds. Emphasis on the analysis and presentation of results and experiment planning. Includes open-ended and collaborative projects. Special fee.
Co-requisite: CHEM 774
Equivalent(s): CHEM 775W

CHEM 776 - Physical Chemistry III
Credits: 3
Application of quantum theory to atomic electron structure, molecular structure, and spectroscopy. Advanced topics in physical chemistry. Prereq: CHEM 683-684. Special fee.

CHEM 777 - Advanced Synthesis and Characterization
Credits: 3
This is an advanced laboratory course involving the synthesis and characterization of organic and inorganic compounds. Students will leave this course with sufficient proficiency to reproduce synthetic procedures and prepare compounds from the chemical literature. Special fee. Prereq: CHEM 550, CHEM 576.

CHEM 795 - Special Topics
Credits: 2-4
New or specialized topics not covered in regular course offerings. Prereq: permission.
Repeat Rule: May be repeated for a maximum of 4 credits.

CHEM 798 - Senior Seminar
Credits: 1
Student reports on topics of interest. Writing intensive. Prereq: CHEM 548 or CHEM 652, CHEM 684. Cr/F.
Attributes: Writing Intensive Course
Equivalent(s): CHEM 698

CHEM 799 - Senior Thesis
Credits: 4
Yearlong investigation in a selected topic, with background and experimental investigation. For chemistry majors who have completed CHEM 548, CHEM 694, and CHEM 762. Required for B.S. majors. Strongly recommended for B.A. chemistry majors. Prereq: 2.50 average and approval of department chairperson. Prereq: CHEM 548, CHEM 684, CHEM 762. Permission required. Lab. Two semesters of 4 credits each are required. Writing intensive.
Attributes: Writing Intensive Course
Repeat Rule: May be repeated up to 1 time.
Equivalent(s): CHEM 699

Faculty

https://ceps.unh.edu/chemistry/people