PHYSICS (PHYS)

Course numbers with the # symbol included (e.g. #400) have not been taught in the last 3 years.

PHYS 400 - Freshman Seminar
Credits: 1
An informal reading and discussion course to introduce students to the general culture of physics, including career possibilities, historical and philosophical aspects of physics, current research at UNH and elsewhere, and physics in the news. Topics vary based on interests of the class. Students in their first year as physics majors (either as freshmen or transfers) are strongly encouraged to take this class. Cr/F.
Repeat Rule: May be repeated for a maximum of 2 credits.

PHYS 401 - Introduction to Physics I
Credits: 4
Broad survey of classical and modern physics. Designed to enable students to appreciate the role of physics in today's society and technology. Emphasizes the fundamental laws of nature on which all science is based, with some examples of interest to biologists. Knowledge of high school algebra, geometry, and trigonometry essential. Lab.
Attributes: Discovery Lab Course; Physical Science(Discovery)
Equivalent(s): PHYS 407, PHYS 407H

PHYS 401J - Introductory Physics Review I
Credits: 4
This course is for those who want to improve their understanding and their grade from Physics 401 before taking PHYS 402. Students must have passed the lab in PHYS 401 at UNH. This course will review all the topics from PHYS 401: motion, forces, energy, momentum, rotation, and fluids. Prereq: PHYS 401.
Attributes: Discovery Lab Course; Physical Science(Discovery)

PHYS 402 - Introduction to Physics II
Credits: 4
Broad survey of classical and modern physics. Designed to enable students to appreciate the role of physics in today's society and technology. Emphasizes the fundamental laws of nature on which all science is based, with some examples of interest to biologists. Knowledge of high school algebra, geometry, and trigonometry essential. Prereq: PHYS 401 or the equivalent. Special fee. Lab.
Attributes: Discovery Lab Course; Physical Science(Discovery)
Equivalent(s): PHYS 408, PHYS 408H

PHYS 405 - Intro to Modern Astronomy
Credits: 4
Starting with a survey of the night sky and the daily motions of the stars and planets, this course surveys our current understanding of the Universe. It traces the development of the tools of the modern astronomer and how those tools have led to out theories of the solar system, the life cycle of stars, the formation of elements, the formation of galaxies and the evolution of the universe. Students explore in depth an astronomical topic of their choice through a term paper. The course includes direct experience with astronomical techniques and concepts through the use of the UNH Observatory and Small Radio Telescope, and a visit to a planetarium. Recommended for liberal arts and beginning science students. Knowledge of high school algebra is assumed. Note that this is the same course as PHYS 406, except for the substitution of a term paper instead of a lab. Cannot be taken for credit if credit received for PHYS 406. Special fee.
Attributes: Physical Science(Discovery)
Equivalent(s): PHYS 406

PHYS 406 - Introduction to Modern Astronomy
Credits: 4
Descriptive coverage of contemporary astronomical and astrophysical techniques with a review of current knowledge and theories concerning the solar system, galaxies, and the universe. Recommended for liberal arts and beginning science students. Knowledge of high school algebra is assumed. Note that this is the same course as PHYS 405, except for the substitution of a lab instead of a term paper. Cannot be taken for credit if credit received for PHYS 405. Lab.
Attributes: Discovery Lab Course; Physical Science(Discovery)
Equivalent(s): PHYS 406H

PHYS 406H - Introduction to Modern Astronomy/Honors
Credits: 4
Descriptive coverage of contemporary astronomical and astrophysical techniques with a review of current knowledge and theories concerning the solar system, galaxies, and the universe. Recommended for liberal arts and beginning science students. Knowledge of high school algebra is assumed. Note that this is the same course as PHYS 405, except for the substitution of a lab instead of a term paper. Cannot be taken for credit if credit received for PHYS 405. Special fee. Lab. Permission required.
Attributes: Discovery Lab Course; Physical Science(Discovery)
Equivalent(s): PHYS 406

PHYS 407 - General Physics I
Credits: 4
Introductory course emphasizing motion, forces, energy, momentum, rotation, and oscillations. Recommended for the student specializing in science and engineering. This version is the traditional format with three lectures, one recitation (problem solving section), and one lab each week. Students in this version must also register for a particular recitation and lab. Prereq: thorough knowledge of algebra, geometry, and trigonometry; May not receive credit for both PHYS 401 and PHYS 407. Pre- or Coreq: MATH 425. Special fee. Lab.
Attributes: Discovery Lab Course; Physical Science(Discovery)
Equivalent(s): PHYS 401, PHYS 407H, PHYS 407S

PHYS 408, PHYS 408H
PHYS 407H - Honors/General Physics I
Credits: 4
Introductory course emphasizing motion, forces, energy, momentum, rotation, and oscillations. Recommended for the student specializing in science and engineering. The honors version covers the same material as the traditional lecture course, but with three two-hour classes per week, most of which is spent working on activities in groups (rather than lecture). Students in the Honors section must be co-enrolled in MATH 425H so that strong connections can be made between math and physics. 407H students work in groups in every class meeting. Students in this version do not register for a recitation or lab, since these activities are integrated into the regular class meetings. Prereq: thorough knowledge of algebra, geometry, and trigonometry; May not receive credit for both PHYS 401 and PHYS 407. Pre- or Coreq: MATH 425. Special fee. Lab.
Co-requisite: MATH 425H
Attributes: Discovery Lab Course; Physical Science(Discovery)
Equivalent(s): PHYS 401, PHYS 407, PHYS 407S

PHYS 407J - General Physics Review I
Credits: 4
This course is for those students who want to improve their understanding and their grade from PHYS 407 before taking PHYS 408. Students must have passed the lab in PHYS 407 at UNH. This course will review all the topics from PHYS 407: motion, forces, energy, momentum, rotation, and oscillations. Pre-req: PHYS 407.
Attributes: Discovery Lab Course; Physical Science(Discovery)
Equivalent(s): PHYS 407

PHYS 407S - General Physics I Studio
Credits: 4
Introductory course emphasizing motion, forces, energy, momentum, rotation, and oscillations. Recommended for the student specializing in science and engineering. The Studio version covers the same material as the traditional lecture course, but with three two-hour classes per week, most of which is spent working on activities in groups (rather than lecture). Students in this version do not register for a recitation or lab since these activities are integrated into the regular class meetings. Prereq: thorough knowledge of algebra, geometry, and trigonometry. May not receive credit for both PHYS 401 and PHYS 407. Pre- or Coreq: MATH 425. Special fee. Lab.
Attributes: Discovery Lab Course; Physical Science(Discovery)
Equivalent(s): PHYS 407

PHYS 408 - General Physics II
Credits: 4
Introductory course emphasizing waves, sound, heat, electricity and magnetism. Recommended for students specializing in science and engineering. This version is the traditional format with three lectures, one recitation (problem solving section), and one lab each week. Students in this version must also register for a particular recitation and lab. Prereq: PHYS 407. May not receive credit for both PHYS 402 and PHYS 408. Pre- or Coreq: MATH 426. Special fee. Lab.
Attributes: Discovery Lab Course; Physical Science(Discovery)
Equivalent(s): PHYS 402, PHYS 408H, PHYS 408S

PHYS 408H - Honors/General Physics II
Credits: 4
Introductory course emphasizing waves, sound, heat, electricity and magnetism. Recommended for students specializing in science and engineering. The honors version covers the same material as the traditional lecture course, but with three two-hour classes per week, most of which is spent working on activities in groups (rather than lecture). Students in the Honors section must be co-enrolled in MATH 426H so that strong connections can be made between math and physics. 408H students work in groups in every class meeting. Students in this version do not register for a recitation or lab since these activities are integrated into the regular class meetings. Prereq: PHYS 407H, MATH 425H. May not receive credit for both PHYS 402 and PHYS 408. Special fee. Lab.
Co-requisite: MATH 426H
Attributes: Discovery Lab Course; Physical Science(Discovery)
Equivalent(s): PHYS 402, PHYS 408, PHYS 408S

PHYS 408S - General Physics II Studio
Credits: 4
Introductory course emphasizing waves, sound, heat, electricity and magnetism. Recommended for students specializing in science and engineering. The Studio version covers the same materials as the traditional lecture course, but with three two-hour classes per week, most of which is spent working on activities in groups (rather than lecture). Students in this version do not register for a recitation or lab since these activities are integrated into the regular class meetings. Prereq: PHYS 407. May not receive credit for both PHYS 402 and PHYS 408. Pre- or Coreq: MATH 426. Special fee. Lab.
Attributes: Discovery Lab Course; Physical Science(Discovery)
Equivalent(s): PHYS 402, PHYS 408, PHYS 408H

PHYS 409 - Investigating Physics
Credits: 4
Elementary physics course where students develop a conceptual understanding of topics such as the solar system, phases of the moon, seasons, electrical circuits, electromagnets, light and color, sound and simple machines. The course is based on hands-on-activities, small groups, and discussions. This course is intended for students with little or no previous experience in physics who do not intend to take any other physics course. Cannot be taken for credit if credit received for PHYS 401, 402, 407 or 408. Not open to Physics majors.
Attributes: Discovery Lab Course; Physical Science(Discovery); Inquiry (Discovery)
Equivalent(s): PHYS 401, PHYS 402, PHYS 407, PHYS 408

PHYS 440A - Hon/Searching for Our Place in the Universe: Foundation and Limits of Certainty in Physical Science
Credits: 4
We explore models of the universe and our place in it. We discuss the foundation of ideas about motion on Earth and in space, as well as the history of modern physics and astronomy, which have changed how we understand space and time. We consider the sources and limitations of human knowledge concerning the origin of the universe, the mystery of the origin of life and evidence that our description of reality is incomplete.
Attributes: Physical Science(Discovery); Writing Intensive Course
PHYS 444 - Myths and Misconceptions about Nuclear Science
Credits: 4
The discoveries of nuclear physics have spawned the nuclear power plant and bomb, but also many far reaching, though less recognized applications of nuclear science in medicine, research, and our everyday lives. This course examines the underlying physics of nuclear science, the resulting technological applications and dangers, and some of the implications for public policy. In the process, we dispel many of the popular myths and misconceptions that surround nuclear science and radiation in the public's mind and the media. You may be surprised! Topics are wide ranging and inherently interdisciplinary. They include nuclear stability and radioactivity, natural sources of radioactivity, the effects of radiation on living things, particularly people, nuclear medicine, nuclear science in fields such as biology, archeology, geology and engineering, nuclear chain reactions, nuclear reactors and energy, nuclear accidents, radioactive waste, nuclear weapons and proliferation, nuclear energy in stars, and the origin of the elements. Be prepared to actively participate.
Attributes: Environment, TechSociety(Disc); Inquiry (Discovery); Writing Intensive Course

PHYS 444B - Into the Final Frontier: America's Journey into Space
Credits: 4
One of the greatest accomplishments of the twentieth century is the human advance into space. For the first time ever, travel beyond the Earth is more than just the subject of adventurous science fiction tales - it is a reality. The purpose of this course is to trace the development of space flight from the late 1800's to the present time and to discuss the future of the United States human space flight program.
Attributes: Environment, TechSociety(Disc); Inquiry (Discovery); Writing Intensive Course

PHYS 501 - Peer-Led Team Learning in Physics
Credits: 1
This course provides students with their initial experience as a peer instruction leader. In this course peer leaders will deepen their knowledge of introductory physics, be introduced to pedagogical theories. Pedagogical topics covered include questioning techniques, learning theory, cooperative learning, student epistemologies, and the nature of science. Students in this course are asked to reflect on their work as peer leaders through the lens of the required readings. Prereq: PHYS 401/PHYS 402 or PHYS 407/PHYS 408. Permission required. Cr/F.

PHYS 502 - Advanced Peer-Led Team Leadership in Physics
Credits: 1
This course provides students with their second experience as a peer instruction leader. In this course peer leaders read more deeply about issues in teaching and learning science in general, and physics in particular. Topics include naive conceptions in physics, cooperative learning strategies, theories of cognition, and classroom assessment. Prereq: PHYS 501. Permission required. Cr/F.

PHYS 505 - General Physics III
Credits: 3
Electromagnetic waves, geometrical and physical optics, relativity, atomic physics, elementary quantum mechanics, molecular physics, and nuclear physics. Prereq: PHYS 408.

PHYS 506 - General Physics III Laboratory
Credits: 1
Co-requisite: PHYS 505

PHYS 508 - Thermodynamics and Statistical Mechanics
Credits: 4
Classical and statistical approach to thermodynamics, kinetic theory. Pre- or Coreq: PHYS 505, MATH 525 or MATH 527.

PHYS 601 - Computational Physics Recitation I
Credits: 1
This course bridges students' computer science class and their physics classes by applying computational tools to basic physics problems. Students will write, check, and document two physics codes. This course focuses on solving differential equations. The course will support students as they work on computational assignments from their core physics courses. Prereq: CS 410 or IAM 550. Coreq: PHYS 505 or PHYS 508.

PHYS 602 - Computational Physics Recitation II
Credits: 1
This course bridges students' computer science class and their physics classes by applying computational tools to basic physics problems. Students will write, check, and document two physics codes. This course focuses on data processing. The course will support students as they work on computational assignments from their core physics courses. Prereq: CS 410 or IAM 550, PHYS 601. Coreq: PHYS 605 or PHYS 615.

PHYS 605 - Experimental Physics I
Credits: 5
Circuit design with passive and active elements including transistors and operational amplifiers; electrical measurements for experimental physics; digital electronics, microprocessors, and interfacing techniques. Prereq: PHYS 408. MATH 525 or 527. Lab. Special fee.

PHYS 615 - Classical Mechanics and Mathematical Physics I
Credits: 4
Analytical treatment of classical mechanics covering the dynamics of particles and rigid bodies at an intermediate level. Advanced mathematical analysis (complex numbers, differential equations, Fourier series, multiple integrals) are reviewed or introduced as needed to analyze physical situations. Prereq: PHYS 407, MATH 527 and MATH 528, or MATH 525 and MATH 526. Pre- or Coreq: MATH 527 and MATH 528 or MATH 525 and MATH 526.

PHYS 616 - Classical Mechanics and Mathematical Physics II
Credits: 4
Analytical treatment of classical mechanics covering the dynamics of particles and rigid bodies, at an intermediate level. Advanced mathematical analysis (complex numbers, differential equations, Fourier series, multiple integrals) are reviewed or introduced as needed to analyze physical situations. Prereq: PHYS 615 and PHYS 505.

PHYS 701 - Quantum Mechanics I
Credits: 4
Non-relativistic Schroedinger equation, the hydrogen atom, applications to atomic and nuclear structure. Prereq: PHYS 505, PHYS 615, PHYS 616.

PHYS 702 - Quantum Mechanics II
Credits: 4
Non-relativistic Schroedinger equation, the hydrogen atom, applications to atomic and nuclear structure. Prereq: PHYS 701.

PHYS 703 - Electricity and Magnetism I
Credits: 4
Foundation of electromagnetic theory; electrostatics, dielectric theory, electromagnetism, magnetic properties of matter, alternating currents, Maxwell's field theory. Prereq: PHYS 408, PHYS 615, MATH 527 and MATH 528 or MATH 525 and MATH 526.
PHYS 704 - Electricity and Magnetism II
Credits: 4
Foundation of electromagnetic theory; electrostatics, dielectric theory,
electromagnetism, magnetic properties of matter, alternating currents,
Maxwell's field theory. Prereq: PHYS 703.

PHYS 705 - Experimental Physics II
Credits: 4
Modern physics experiments and special project problems assigned to
individual students. Prereq: PHYS 605, PHYS 505, CS 410P or IAM 550.
Lab.
Attributes: Writing Intensive Course

PHYS 707 - Optics
Credits: 4
Geometrical optics, electromagnetic theory of light, interference,
diffraction, polarization, related phenomena and nonlinear optics. Prereq:
PHYS 505, PHYS 615, PHYS 616. Lab.
Equivalent(s): PHYS 607

PHYS 710 - Astrophysics I
Credits: 4
A comprehensive review of modern astrophysics. Topics covered
include the celestial sphere, celestial mechanics, the tools of the
modern astronomer (including different types of telescopes for studying
the electromagnetic radiation from space), stellar spectra, stellar
atmospheres, stellar interiors, the formation of stars, stellar evolution,
and the stellar graveyard (white dwarfs, neutron stars, and black holes).
Prereq: MATH 525/MATH 526 or MATH 527/MATH 528, PHYS 505/
PHYS 506.

PHYS 711 - Astrophysics II
Credits: 4
A continuation of the comprehensive review of modern astrophysics.
Topics covered include the degenerate stellar remnants (white dwarfs,
neutron stars, black holes), the interstellar medium, the Milky Way Galaxy,
the nature of galaxies, the evolution of galaxies, the structure of the
Universe, active galaxies, cosmology, and the early Universe. Prereq:
MATH 525/MATH 526 or MATH 527/MATH 528, PHYS 505/PHYS 506,
PHYS 710.

PHYS 712 - Space Plasma Physics
Credits: 4
Introduces space plasma physics, including solar physics, heliospheric
physics, magnetospheric physics, and ionospheric physics. An overview
of the basic phenomena and processes (e.g., particle acceleration and
transport, shock formation, magnetic structures and reconnection,
wave propagation, wave-particle interactions, instabilities), theoretical
techniques (e.g., single-particle orbits, kinetic and fluid descriptions),
and experimental techniques. (Alternate years only). Prereq: PHYS 408,
PHYS 508, PHYS 616.
Equivalent(s): EOS 712

PHYS 718 - Condensed Matter Physics
Credits: 4
Theory and experiment underlying the behavior of solids. Transport
theory, surface studies, and the interaction of radiation and matter.
Operation of semiconducting and superconducting devices and lasers.
Prereq: PHYS 508. Pre- or Co-req: PHYS 701.

PHYS 720 - Nuclear Physics
Credits: 4
Nuclear phenomenology, reactions, models, radiation, interaction of
radiation with matter; accelerators; properties and interactions of
elementary particles; symmetries and symmetry breaking; standard
model. Pre- or Co-req: PHYS 702, PHYS 703.

PHYS 764 - General Relativity and Cosmology
Credits: 4
Review of special relativity, and the motivation for considering gravity in
terms of curvature of space time. Introduction to Riemannian geometry,
general relativity and Einstein's equations. Application of general
relativity in the study of black holes, gravitational waves, cosmology, as
well as recent results on inflation and quantum gravity. (Alternate years
only). Prereq: PHYS 505, PHYS 508, PHYS 616, CS 410P or IAM 550,
MATH 645 or MATH 545 or MATH 525.

PHYS 791 - Special Topics
Credits: 4
Any selected topics not covered sufficiently in a general course may be
studied.
Repeat Rule: May be repeated for a maximum of 8 credits.

PHYS 795 - Independent Study
Credits: 1-8
Individual project under direction of a faculty adviser. Prereq: department
permission.

PHYS 797 - Senior Design Project
Credits: 2
Four credits of this course is the required Senior Design Project for BSEP
majors and fulfills their capstone requirement; the course is taken for two
credits in each of the last two semesters before graduation. Students
work under the direction of a faculty sponsor on the design aspect of
a specific project, which might include trade studies, design reviews,
cost-benefit analyses, etc. all leading to an optimal design solution.
Acceptable designs can include detailed hardware aspects of a system
or sub-system, numerical modeling of a system, or paper studies of a
system concept. Students are required to submit a final report and to
present their work at a public forum. Restricted to BSEP seniors. Writing
intensive.
Attributes: Writing Intensive Course
Repeat Rule: May be repeated for a maximum of 4 credits.

PHYS 799 - Thesis
Credits: 4
Students complete an independent project and submit a written report.
Students can choose from a range of projects, including (but not limited
to) a research or numerical project, and extensive literature review on
an advanced physics topic, building an apparatus, or developing a
ew or existing experiment in Physics 705. A student intending to take
Physics 798 must arrange to have a faculty advisor for the project and
should work with this advisor to develop a one-page project proposal.
The student must submit this proposal to the Physics Undergraduate
Curriculum Committee by the tenth week of the semester preceding the
semester in which the student takes Physics 798. This course satisfies
the capstone requirement in Physics.

PHYS 799 - Thesis
Credits: 4
Students work under the direction of a faculty sponsor to plan and carry
out independent research resulting in a written thesis. Required for
honors-in-major. Restricted to seniors. Prereq: PHYS 795 or INCO 790.
Attributes: Writing Intensive Course
Repeat Rule: May be repeated for a maximum of 8 credits.