## Genetics (GEN)

- **GEN 401 - Professional Perspectives in Genetics**  
  **Credits:** 1  
  Introduction to the fields of genetics and genomics and to the genetics faculty and their research. Careers and professional opportunities for genetic majors presented by invited speakers. Emphasis on skills needed for academic success and strategies for achieving professional goals. Cr/F.

- **GEN 600 - Field Experience**  
  **Credits:** 1-4  
  Supervised experience providing the opportunity to apply academic experience in settings associated with future professional employment and/or related graduate opportunities. Must be approved by a faculty advisor selected by the student. Permission required. Cr/F.
  **Repeat Rule:** May be repeated for a maximum of 4 credits.
  **Equivalent(s):** GEN 600W

- **GEN 604 - Principles of Genetics**  
  **Credits:** 0 or 4  
  Chemical structure of genetic material, gene recombination, mutation, and chromosome mapping. Gene expression and regulation; recombinant DNA; evolutionary, quantitative, and population genetics. Prereq: BIOL 411 and BIOL 412 or equivalent; CHEM 403 and CHEM 404 or equivalent; or permission. College math or statistics suggested.
  **Equivalent(s):** BIOL 604

- **GEN 606 - Genetics Lab**  
  **Credits:** 4  
  Hands-on experience with some of the important model organisms used for research in genetics (fruit flies, bacteria, yeast, nematodes, and plants). Investigation of fundamental genetic concepts in the laboratory, experience with transmission and molecular genetic techniques, introduction to bioinformatics, analysis and interpretation of data. Prereq: GEN 604. Special fee.

- **GEN 704 - Genetics of Prokaryotic Microbes**  
  **Credits:** 0 or 5  
  Maintenance, exchange, and expression of genetic material in bacteria and their viruses. Historical overview of the role microbial genetics played in development of modern molecular biology. Contemporary perspective on methods used to understand the function of genes and their applications to basic science, biomedical genetics, and biotechnology. Prereq: BMS 503 and BMS 504; GEN 604; or permission. Lab. Special fee. Writing intensive.
  **Attributes:** Writing Intensive Course

- **GEN 705 - Population Genetics**  
  **Credits:** 3  
  Exploration of the forces (mutations, selection, random drift, inbreeding, assortative mating) affecting the frequency and distribution of genetic variation in natural populations. Quantifying the structure of populations. Methods of analysis for theoretical and practical applications. Prereq: GEN 604 or equivalent; BIOL 528 or equivalent.
  **Equivalent(s):** P BIO 705, ZOOL 665, ZOOL 705

- **GEN 706 - Human Genetics**  
  **Credits:** 4  
  Genetic basis of human traits and diseases including both traditional methods of diagnosis and contemporary molecular genetic approaches stemming from the human genome project. Case studies exemplify common practices in human genetic counseling and integrate the scientific basis of diagnosis with the special ethical implications of human genetic analysis. Prereq: GEN 604 or permission.
  **Equivalent(s):** ANSC 706, BCHM 706

- **GEN 711 - Genomics and Bioinformatics**  
  **Credits:** 0 or 4  
  **Equivalent(s):** GEN 711W

- **GEN 711W - Genomics and Bioinformatics**  
  **Credits:** 0-4  
  Methods, applications, and implications of genomics—the analysis of whole genomes. Microbial, plant and animal genomics are addressed, as well as medical, ethical and legal implications. The lab provides exposure and experience on a range of bioinformatics approaches—the computer applications used in genome analysis. Prereq: GEN 604. Lab. Writing intensive. Only offered in Manchester.
  **Attributes:** Writing Intensive Course
  **Equivalent(s):** BCHM 711, BCHM 715, GEN 711, MICR 711, MICR 715

- **GEN 712 - Programming for Bioinformatics**  
  **Credits:** 5  
  Development of programming skills that enable life science students to ask fundamental biological questions that require computers to automate repetitive tasks and handle query results efficiently. Topics include: computer values of important parameters of biological sequence data; pattern search and motif discovery scripts; accessing, querying, manipulating, retrieving, parsing, analyzing, and saving data from local and remote databases. Prereq: GEN 604 and GEN 711. Computer Lab.

- **GEN 713 - Microbial Ecology and Evolution**  
  **Credits:** 4  
  Evolutionary and ecological forces that generate the tremendous diversity of microbial life on Earth with emphasis on viruses, archaea and bacteria. Functional roles of microorganisms, their population dynamics and interactions, and their mechanisms of evolutionary change in a variety of environmental settings, including natural communities and laboratory microcosms. Prereq: GEN 604; BMS 503 and BMS 504; or permission. Writing intensive.
  **Attributes:** Writing Intensive Course
  **Equivalent(s):** MICR 713

- **GEN 714 - Personal Genomics**  
  **Credits:** 4  
  Analysis and implications of personal genomic data is the focus of this course. Students understand and appreciate all aspects of the availability of personal genomic information and tools including scientific, medical, social, ethical and legal issues. Students have the opportunity to analyze their own individual genome to one of the publicly available genomes to learn about all various aspects of this emerging field. The course will be an entirely online format. Prereq: GEN 604. UNHM only.
GEN 715 - Molecular Evolution
Credits: 4
Equivalent(s): ZOOL 715

GEN 717 - Molecular Microbiology
Credits: 5
Fundamental physiological and metabolic processes of archaea, bacteria and fungi with a strong emphasis on prokaryotes. Literature-based course. Topics include regulation and coordination of microbial metabolism, bacterial cell cycle, global control of gene expression, signal transduction, and microbial cell differentiation. Prereq: BMS 503 and BMS 504; GEN 604; or permission. Special fee. Lab. Writing intensive. Attributes: Writing Intensive Course
Equivalent(s): MICR 717

GEN 721 - Comparative Genomics
Credits: 4
Explores the central questions and themes in contemporary comparative genomics, including genome biology, phylogenomics, human origins, population genomics, and ecological genomics. Provides the conceptual framework required to evaluate new work in this fast-changing field. Prereq: GEN 604 or equivalent. 

GEN 725 - Population Genetics Lab
Credits: 2
Hands-on approach to exploration of evolutionary forces affecting the frequency and distribution of genetic variation in natural populations. Wet lab techniques include DNA extraction, restriction enzyme digestion, PCR, DNA fragment size-selection. Computational skills include high-throughput sequencing data control, identifying allelic variants, and generation of population genetic summary statistics. Prereq: GEN 604 or equivalent; BIOL 528 or equivalent. Co-requisite: GEN 705

GEN 771 - Molecular Genetics
Credits: 4
Structure, organization, replication, dynamics, and expression of genetic information in eukaryotes. Focus on molecular genetic and epigenetic mechanisms of gene expression and its control; molecular genetic control of cell division and differentiation during development. Prereq: GEN 604 or permission. 
Equivalent(s): BCHM 771, BSCI 777

GEN 772 - Evolutionary Genetics of Plants
Credits: 4
Mechanisms of genetic change in plant evolution, both in nature and under human influence. Topics include neo-Darwinian theory; speciation and hybridization; origins and co-evolution of nuclear and organelle genomes; gene and genome evolution; transposable elements; chromosome rearrangements; polyploidy; genetic modification. Lab introduces methods in information gathering, bioinformatics, genome analysis, plant breeding, and genetic manipulation. Prereq: GEN 604 or equivalent. Lab. Writing intensive.
Attributes: Writing Intensive Course
Equivalent(s): PBIO 772

GEN 774 - Techniques in Plant Genetic Engineering and Biotechnology
Credits: 4
Theory and hands-on experience with techniques used in plant genetic engineering, including cell and tissue culture, gene cloning, and analysis of foreign gene expression. Discussion of role of plant biotechnology in sustainable agriculture and climate change; modifying plants for better nutrition and stress response, environmental remediation, and production of pharmaceuticals; controversies associated with this technology. Lab. Special fee. Prereq: GEN 604 or permission. 
Equivalent(s): PBIO 774, PBIO 775

GEN 790 - Undergraduate Teaching Experience
Credits: 1-4
Provide academic support to graduate teaching assistants or faculty in preparing, presenting, and executing Genetics lectures or labs. Permission required. 
Repeat Rule: May be repeated for a maximum of 4 credits. 
Equivalent(s): BMS 790, MICR 790

GEN 795 - Investigations in Genetics
Credits: 1-4
Advanced research or scholarly projects developed and conducted under the supervision of a faculty member. Provides the opportunity to apply advanced knowledge and techniques of the major to a specific problem or question. Permission required. 
Repeat Rule: May be repeated for a maximum of 4 credits. 
Equivalent(s): GEN 795W

GEN 795W - Investigations in Genetics
Credits: 1-4
Advanced research or scholarly projects developed and conducted under the supervision of a faculty member. Provides the opportunity to apply advanced knowledge and techniques of the major to a specific problem or question. Permission required. 
Attributes: Writing Intensive Course
Repeat Rule: May be repeated for a maximum of 4 credits. 
Equivalent(s): GEN 795

GEN 799 - Senior Thesis
Credits: 1-4
Independent research project under the direction of a faculty sponsor for seniors in genetics. Final product is a written thesis. One or two semesters. Permission required. 
Attributes: Writing Intensive Course
Repeat Rule: May be repeated for a maximum of 8 credits.

GEN 799H - Honors Senior Thesis
Credits: 1-4
Independent research project under the direction of a faculty sponsor for seniors in genetics and in the Honors Program. Final product is a written thesis. One or two semesters. Permission required. 
Attributes: Writing Intensive Course
Repeat Rule: May be repeated for a maximum of 8 credits.