CIVIL TECHNOLOGY (CT)

Course numbers with the # symbol included (e.g. #400) have not been taught in the last 3 years.

CT 423 - Introduction to Surveying and Mapping
Credits: 3
An introduction to the field of surveying and mapping and its fundamental principles, theories and methods. Specifically: horizontal and vertical distance measurements, angle and direction measurements, determination of positions, areas and topographic contours. Includes mapping, geographic information systems and the Global Positioning System, measurement accuracy, and statistical analysis.
Co-requisite: CT 425

CT 425 - Surveying and Mapping Lab
Credits: 2
A series of labs and recitations that provide an introduction to the field of surveying and mapping and its fundamental principles, theories and methods. Specifically: horizontal and vertical distance measurements, angle and direction measurements, determination of positions, areas and topographic contours. Includes mapping, geographic information systems and the Global Positioning System, measurement accuracy, and statistical analysis.
Co-requisite: CT 423

CT 427 - 2D Computer Aided Design
Credits: 4
The student designs fundamental design project work including site work and buildings, prepares plans using computer software (AutoCAD). Emphasis is on learning the software, basic design and plan requirements. Students then apply this knowledge to produce presentation drawings and develop proficient skills with this software. The student also works concurrently on course projects. 2-hr lec/2-hr rec.

CT 428 - 3D Design, Modeling and Visualization
Credits: 4
Provides foundational skills in critical thinking, design process and creative expression in three dimensions. Individual and group projects provide opportunities for enhancing spatial thinking, understanding and communication. Hand sketching, computer sketching, REVIT Building Information Modeling (BIM) software and ArcGIS Geographic Information System (GIS) software is utilized to develop a rich awareness of 3D spatial relationships in the natural and built environments.

CT 432 - Applied Environmental Technology
Credits: 4
The technical and administrative issues inherent to the management of our impact on the environment are covered. Topics to be covered include: examination of the evolution, design, and processes inherent to manage and treat stormwater, deliver potable water, collect and treat wastewater discharge, manage solid and hazardous waste, and promote recycling. Global climate change monitoring is also discussed when appropriate.

CT 442 - Construction Surveying
Credits: 4
This course applies methods and techniques learned in CT 423/424 to real world situations. The student works as part of a project team on a proposed construction site. Tasks and materials covered include: setting control, mapping of sites, design and layout of roadways, site planning, building and infrastructure layout, area and volume calculations. Class expands on use of survey equipment such as data collectors, RTK-GPS and land design computer software. Prereq: CT 423 and CT 424 with a grade of C- or better. 2-hr lec/1-hr rec/2-hr lab.

CT 483 - Mechanical and Electrical Systems
Credits: 4
Description, analysis and design application of conventional heating, ventilating, air conditioning, lighting and plumbing systems for residences. Electrical principles, laws, and installation with emphasis on the National Electrical Code. 2-hr lec/2-hr rec.

CT 538 - Construction Contracting
Credits: 4
Overview of administrative skills required to manage a construction concern. Emphasis on project management through the entire construction and design process. Building codes and the ADA code included. 2-hr lec/2-hr rec.

CT 541 - Legal Aspects of Surveying
Credits: 4
The legal issues involved when performing a property boundary survey are presented. Ownership of land, the search for boundary evidence, methods of performing research and resolving conflicting information and disputes are discussed. Other topics include: An introduction to legal principles, statutes, case law, terminology, liability, ethics and standards relating to surveying. A course-long project is undertaken whereby research, the search for evidence, a field survey, boundary determination and a plat are completed. Prereq: CT 423 and CT 424 with a grade of C- or better. 2-hr lec/2-hr rec.

CT 543 - Advanced Surveying and Mapping
Credits: 4
A continuation of surveying topics not covered in CT 423 and CT 424, CT 442 and CT 541. Specifically: Geodesy, Map Projection Systems, State Plane Coordinates, Control Surveys, Static and Real Time Satellite Positioning, Astronomic Observations, Equipment Testing, Site Detail Mapping, Laser Scanning, Observation Adjustment Theory and 3D Least Squares Adjustment. Prereq: C- or better in CT 423 and CT 424. 3-hr lec/3-hr lab.

CT 548 - Advanced Surveying Computation
Credits: 4
Emphasis on how to perform the typical surveying computations encountered in the field. Use of surveying and mapping software and plotters for topographic mapping and subdivision design. Advanced GIS theory and applications including Photogrammetry and Remote Sensing. Field equipment testing and adjustment. Prereq: CT 423 and CT 424, CT 442, CT 543, minimum grade of C- or better in all, or permission. 3-hr lec/2-hr lab.

CT 551 - Statics and Materials
Credits: 4
Determining and evaluating physical properties of common building construction materials: wood, steel and non-ferrous metals, cement, concrete, brick, and bituminous materials. Application of materials to design of structural elements in beam and column applications, under various load conditions. Emphasis on appropriate material selection and optimization of design. Prereq: MTH 203. 2-hr lec/2-hr rec.

CT 554 - Soils and Foundations
Credits: 4
Subsurface exploration, soil sampling, testing and evaluating subsurface materials, and their effect on foundations, site development, and construction. Hands-on laboratory component. Introduction to site excavation methods and foundation design. 2-hr rec/2-hr lab/rec.
CT 557 - Land Design and Regulations
Credits: 4
Hydrology of drainage and storm water runoff, basic concepts of hydraulic flow in pipes and channels, and overview of pump systems. Technical and regulatory requirements of designing residential water supply and septic disposal systems. Review of federal, state, and local ordinances with respect to construction and land development. 2-hr lec/2-hr rec.

CT 576 - Building Science/Residential Construction
Credits: 4
The study of inter-relationship of physical principles that affect the functionality and life span of a building; foundations, floor and framing systems, roofing styles and options, siding and interior finish work, and fenestrations. The materials and methodologies of residential construction with an emphasis on energy efficiency, air quality management, and moisture control. Includes safe and efficient operation of industry-standard power tools in hands-on shop environment (table saw, jointer, miter saw, etc.).

CT 581 - Architecture I History and Design
Credits: 4
Develops a basic understanding of American residential architectural history while developing architectural programming and design skills in a project based environment. Moderate CAD usage for project submissions 2-hr lec/2-hr rec.

CT 582 - Architecture II
Credits: 4
Studio application of principles and skills developed in the architectural concentration. Design of a complete shelter system into the design development phase. Prereq: CT 581. 2-hr lec/2-hr rec.

CT 591 - Studies
Credits: 1-4
Students who have the ability and adequate preparation to work independently may propose a contract to design a course or research project on a topic not available through existing course offerings. The purpose of this research is to explore new areas in the student's field of study or to pursue course material in greater depth. Work is supervised by an appropriate faculty/staff member and credit varies depending on the proposed project/research. Examples may include energy conservation, surveying, construction, or hydrographic surveying.

CT 592 - Studies
Credits: 1-4
Students who have the ability and adequate preparation to work independently may propose a contract to design a course or research project on a topic not available through existing course offerings. The purpose of this research is to explore new areas in the student's field of study or to pursue course material in greater depth. Work is supervised by an appropriate faculty/staff member and credit varies depending on the proposed project/research. Examples may include energy conservation, surveying, construction, or hydrographic surveying.

CT 597 - Work Experience
Credits: 0
Career-oriented work experience (10 weeks, full time) to include, but not limited to, architecture, construction, surveying, and mapping. Cr/F.