CHEMICAL ENGINEERING & BIOENGINEERING (CHBE)

Course numbers with the # symbol included (e.g. #400) have not been taught in the last 3 years.

CHBE 400 - Chemical and Bioengineering Lectures
Credits: 1
Introduces the profession, the process engineer as designer and problem solver; and the goals of the chemical engineering/bioengineering curriculum. Lectures by faculty and practitioners. Introduction to computer skills, engineering ethics, safety, and careers in chemical engineering and bioengineering.
Equivalent(s): CHE 400
Grade Mode: Credit/Fail Grading

CHBE 410 - Energy and Environment
Credits: 4
Energy supply in this country and the world; conventional fuel reserves: coal, oil, natural gas; alternative sources: nuclear, solar, geothermal, etc. Forecasts and strategies to meet needs. Environmental pollution, sources, and economic and environmental impacts. Methods for pollution control. Regulatory standards for environmental protection.
Attributes: Physical Science(Discovery)
Equivalent(s): CHE 410
Grade Mode: Letter Grading

CHBE 501 - Material Balances
Credits: 3
Systems of units; material balances and chemical reactions; gas laws; phase phenomena.
Equivalent(s): CHE 501
Grade Mode: Letter Grading

CHBE 502 - Energy Balances
Credits: 3
Energy and material balances for systems with and without chemical reactions; design case studies.
Attributes: Inquiry (Discovery)
Equivalent(s): CHE 502
Grade Mode: Letter Grading

CHBE 601 - Fluid Mechanics and Unit Operations
Credits: 3
Continuity, momentum, and energy equations; laminar and turbulent flow in pipes; rheology. Applications to flow in porous media, filtration, and fluidization.
Equivalent(s): CHE 601
Grade Mode: Letter Grading

CHBE 602 - Heat Transfer and Unit Operations
Credits: 3
Thermal properties of materials, steady-state and transient conduction and convection; radiation; applications to heat exchangers and process equipment.
Equivalent(s): CHE 602
Grade Mode: Letter Grading

CHBE 603 - Applied Mathematics for Chemical Engineers
Credits: 4
Mathematical modeling and analysis of chemical engineering problems. Analytical methods for first and second-order differential equations; numerical solutions; series solutions; Bessel functions; Laplace transforms; matrix algebra. Interpretation and solution of partial differential equations. Lab.
Equivalent(s): CHE 603
Grade Mode: Letter Grading

CHBE 604 - Chemical Engineering Thermodynamics
Credits: 3
Volumetric and phase behavior of ideal and real gases and liquids; cycles; steady-flow processes; chemical equilibrium.
Equivalent(s): CHE 604
Grade Mode: Letter Grading

CHBE 612 - Chemical Engineering Laboratory I
Credits: 3
Selected experiments in fluid mechanics, heat transfer, and unit operations.
Attributes: Writing Intensive Course
Equivalent(s): CHE 612
Grade Mode: Letter Grading

CHBE 651 - Biotech Experience/Biomanufacturing
Credits: 4
Course begins by introducing students to the proteins and companies of biotechnology and to current good manufacturing practices. For remainder of the course, students use cell culture of bacteria, mammalian and yeast cells to produce human proteins using the tools and manufacturing standards, operating procedures of biotechnology, including upstream and downstream processing of proteins, and quality control of protein production.
Equivalent(s): CHE 651
Mutual Exclusion: No credit for students who have taken BIOT 775.
Grade Mode: Letter Grading

CHBE 695 - Chemical Engineering Project
Credits: 1-4
Independent research problems carried out under faculty supervision.
Equivalent(s): CHE 695
Grade Mode: Letter Grading

CHBE 696 - Independent Study
Credits: 1-4
Permission of the adviser and department chairperson required; granted only to students having superior scholastic achievement.
Equivalent(s): CHE 696
Grade Mode: Letter Grading

CHBE 703 - Mass Transfer and Stagewise Operations
Credits: 3
Diffusion in gases, liquids, and solids; design and analysis of distillation, absorption, and other stagewise equipment and operations.
Equivalent(s): CHE 703
Grade Mode: Letter Grading
CHBE 705 - Fossil Fuels and Renewable Energy Sources
Credits: 4
Processing and refining of coal, crude oil, natural gas, tar sands and shale oil. Biomass co-combustion, biofuel extraction, impediments to widespread utilization. Exploration of environmental issues with energy generation and consumption. Lab.
Equivalent(s): CHE 705
Grade Mode: Letter Grading

CHBE 706 - Electrochemical Methods for Energy Applications
Credits: 4
Fundamentals and applications of thermodynamics of electrochemical processes; kinetics of electrochemical reactions; electrocatalysis basics and current technologies for batteries, supercapacitors and fuel cells.
Prerequisite(s): CHEM 683 with a minimum grade of D- and CHEM 684 with a minimum grade of D-.
Equivalent(s): CHE 706
Grade Mode: Letter Grading

CHBE 707 - Chemical Engineering Kinetics
Credits: 3
Use of laboratory data to design commercial reactors. Continuous, batch, plug-flow, and stirred-tank reactors for homogeneous and catalytic multiphase reactions.
Equivalent(s): CHE 707
Grade Mode: Letter Grading

CHBE 708 - Chemical Engineering Design
Credits: 4
Introduction to cost engineering. Application of acquired skills to design of chemical processes. Individual major design project required. Safety for industrial processes. Lab.
Attributes: Writing Intensive Course
Equivalent(s): CHE 708
Grade Mode: Letter Grading

CHBE 709 - Fundamentals of Air Pollution and Its Control
Credits: 4
Equivalent(s): CHE 709
Grade Mode: Letter Grading

CHBE 710 - Introduction to Nuclear Engineering
Credits: 4
Development of nuclear reactors; binding-energy; radioactivity; elements of nuclear reactor theory; engineering problems of heat transfer, fluid flow, materials selection, and shielding; environmental impacts.
Equivalent(s): CHE 712
Grade Mode: Letter Grading

CHBE 711 - Chemical Engineering Laboratory II
Credits: 3
Selected experiments in mass transfer, stagewise operations, thermodynamics, and kinetics.
Attributes: Writing Intensive Course
Equivalent(s): CHE 713
Grade Mode: Letter Grading

CHBE 714 - Chemical Sensors
Credits: 4
Interdisciplinary approach using thermodynamic, physical and surface chemistry, kinetic, electrochemical, and optical principles to analyze and design chemical sensors. Topics will include selectivity and sensitivity of sensors, biosensors, electrochemical sensors, mass sensors, optical sensors, and multivariate sensors. Lab.
Prerequisite(s): MATH 527 with a minimum grade of D- and CHEM 405 with a minimum grade of D-.
Equivalent(s): CHE 714
Grade Mode: Letter Grading

CHBE 712 - Introduction to Microfluidics
Credits: 4
Fundamentals and applications of microfluidics; scaling laws; microfabrication technology; hydrodynamics and electrodynamics; interfacial phenomena; capillary effects and diffusion; microvalves; micropumps; lab-on-a-chip systems; biochips.
Prerequisite(s): CHEM 610 with a minimum grade of D-.
Equivalent(s): CHE 712
Grade Mode: Letter Grading

CHBE 715 - Cell Phenotyping and Tissue Engineering Laboratory
Credits: 4
Introduction to culture and phenotyping of mammalian cells (cell line models), with applications to bioengineering and biomedical sciences. Skills, techniques, and knowledge covered include sterile technique, cell culture, cell line models, cell proliferation, cell survival, cell migration, cell adhesion, and drug response. Inquiry-based team projects investigate cell proliferation, cell death, transfection, flow cytometry, 3D scaffolds, or cell imaging.
Prerequisite(s): BMS 503 with a minimum grade of D- and BMS 504 with a minimum grade of D-.
Equivalent(s): BENG 725
Grade Mode: Letter Grading

CHBE 716 - Corrosion
Credits: 4
Fundamentals of corrosion processes in industrial and environmental settings; thermodynamics, kinetics, and mass transport in local corrosion cells; protection by electrochemical, chemical, surface modification or barrier methods; instrumental methods in corrosion science. Lab.
Equivalent(s): CHE 744
Grade Mode: Letter Grading

CHBE 717 - Process Dynamics and Control
Credits: 4
Dynamic behavior of chemical engineering processes described by differential equations; feedback control concepts and techniques; stability analysis. Lab.
Equivalent(s): CHE 752
Grade Mode: Letter Grading
CHBE 755 - Computational Molecular Bioengineering
Credits: 4
Introduction to fundamental concepts in bioengineering with primary emphasis on understanding details of biomolecular structures integrated with molecular modeling, simulation, and visualization techniques. The course will introduce structural details of various biomolecules (proteins, nucleic-acids, sugars, and lipids), followed by concepts in thermodynamics and physical chemistry (such as intermolecular forces, energy, entropy, chemical potential, and Boltzmann's distribution), the applications of which will be discussed in the context of drug-receptor interactions, molecular recognition, biomolecular folding, enzyme catalysis, allosteric communication, diffusion, and transport. The laboratory will include training and learning about advanced simulation and visualization software engines. Preference will be given to bioengineering majors.
Equivalent(s): BENG 755
Grade Mode: Letter Grading

CHBE 761 - Biochemical Engineering
Credits: 4
Immobilized enzyme technology, microbial biomass production, transport phenomena in microbial systems, biological reactor design, process instrumentation and control, applications in separation and purification processes. Lab.
Equivalent(s): CHE 761
Grade Mode: Letter Grading

CHBE 762 - Biomedical Engineering
Credits: 4
Overview of the biomedical engineering through topical studies such as drug delivery and sensors. Discussion of modern engineering methods through primary research sources. Differential equations and statistics required prior to taking this course.
Attributes: Writing Intensive Course
Equivalent(s): BENG 762, CHE 762
Grade Mode: Letter Grading

CHBE 763 - Bioengineering Design I
Credits: 2
Bioengineering design course will cover safety, regulations and ethics for development of bioengineering devices and processes. Topics include product design, benchmarks, design team functioning, marketing and finances. Students will also learn about current Good Manufacturing Practices, process validation and intellectual property considerations. Students will produce the following documents during the course: preliminary design, materials and supplies list, project schedule and budget, innovation map, FDA approval plan.
Attributes: Writing Intensive Course
Equivalent(s): BENG 763
Grade Mode: Letter Grading

CHBE 764 - Bioengineering Design II
Credits: 4
Team based laboratory course focuses on developing the project planned in CHBE 763. Major report is due at mid-semester after first prototype is completed. A second report is due at the end of the semester to indicate improvements on initial design.
Attributes: Writing Intensive Course
Equivalent(s): BENG 764
Grade Mode: Letter Grading

CHBE 766 - Biomaterials
Credits: 4
Fundamental principles of biology and material science, along with latest topics in biomaterials research. Topics include cell biology, wound healing, host response to foreign materials, polymers, hydrogels, diffusion and methods of material characterization. Specific medical applications of biomaterials such as orthopedic and dental implants, heart valves, artificial blood vessels, cochlear and ophthalmic implants and tissue engineering. Laboratory. Students are expected to have some background in chemistry, mathematics, and high school biology.
Equivalent(s): BENG 766, CHE 766
Grade Mode: Letter Grading