OCEAN ENGINEERING (PH.D.)

https://ceps.unh.edu/ocean-engineering/program/phd/ocean-engineering

Description

Students admitted to the ocean engineering Ph.D. program come from traditional engineering degree programs including physics, mathematics, computer science, and in some cases, marine science programs. Those entering the Ph.D. program with a B.S. degree from an engineering program should be prepared to begin the Ph.D. program directly. Those coming from a B.S. in physics, mathematics, or computer science will have their transcripts more carefully reviewed on an individual basis, as additional courses may be required.

A student in the ocean engineering Ph.D. program will be expected to take a minimum of 12 courses (exclusive of dissertation research) beyond those required for a B.S. degree.

Requirements

Required Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCI #850</td>
<td>Biological Oceanography</td>
<td>3-4</td>
</tr>
<tr>
<td>ESCI 852</td>
<td>Chemical Oceanography</td>
<td></td>
</tr>
<tr>
<td>ESCI 858</td>
<td>Introduction to Physical Oceanography</td>
<td></td>
</tr>
<tr>
<td>ESCI 859</td>
<td>Geological Oceanography</td>
<td></td>
</tr>
</tbody>
</table>

Complete the following core courses in ocean engineering: 18 credits

- ESCI 820 Ocean Measurements Lab
- OE 853 Ocean Hydrodynamics
- OE 854 Ocean Waves and Tides
- OE 864 Spectral Analysis of Geophysical Time Series Data
- OE 865 Underwater Acoustics

Select two 900 level courses from the following list: 6-8 credits

- ME 910 Turbulence
- OE 965 Advanced Underwater Acoustics
- OE 972 Hydrographic Field Course
- OE 995 Graduate Special Topics

Select two 800 or 900 level courses from MATH or IAM or select both: 6-8 credits

- ME 886 Introduction to Finite Element Analysis
- ME 986 Advanced Finite Element Analysis

Select an additional four CEPS electives (two at the 800 level; two at the 900 level): 12-16 credits

The general progress of a student through this program is expected to follow the time frame listed:

Year 1: Coursework

Year 2: Coursework, qualifier by the end of the year, form graduate dissertation committee

Year 3: Research, dissertation proposal defense

Year 4: Research

Year 5: Research, dissertation defense

The course selection and sequencing will be established in consultation with the student’s guidance committee. There will be a qualifying examination on the core courses by the end of the second year. The goal of this exam is to test the breadth of a student’s knowledge in topic areas essential to ocean engineering. A formal dissertation proposal defense will include a written proposal, a public presentation and an oral exam. After successful completion of the qualifying exam and dissertation proposal defense, the student will be advanced to candidacy. The dissertation will be defended in a public forum when completed.