ANALYTICAL ECONOMICS (M.S.)

https://paulcollege.unh.edu/economics/program/ms/analytical-economics

Description

Paul College’s STEM designated Master of Science in Analytical Economics is a breed apart. The program offers students a choice between an academic track and an industry track. Students also have the flexibility of pursuing a mixed track that combines courses from the academic and industry tracks.

The academic track provides a full year of doctoral-level economic theory, econometric analysis, and research seminar. It is designed for students whose goal is to become a research economist and possibly a Ph.D. economist.

The industry track’s curriculum is unlike any other Master’s program in the country. It is interdisciplinary, weaving together economic theory, data analytics, statistical methods, and data modeling. The program’s mix of doctoral-level and applied classes is also distinctive. Students learn economic theory and statistical methods at the doctoral level. They also use economic theory and data to understand a range of business decision problems. Innovative applied classes include Macroeconomic Consulting and Strategy Analysis: Games and Auctions.

Few other Master’s programs in the country provide a toolkit with comparable interdisciplinary range or rigor. Students learn economic theory and econometrics, code in R and STATA, and learn SQL, PowerBI, and Tableau all in one year. Graduates are uniquely trained to help business managers and project leaders not only formulate decision problems, but communicate with IT people on what data and analysis may be needed. People with this training are increasingly in high demand.

Students enroll in an intensive Math Economics course during the month of August. The program culminates with a capstone experience, which depends on a student’s chosen track.

The program requires a minimum of 32 credit hours of coursework and a capstone experience. All students must complete four core classes. The program can be completed in 12 months. It begins with an August term in which Mathematical Economics is taught in a concentrated manner over two to three weeks. The August term is followed by two semesters of coursework. Some of the industry-track courses are scheduled on an 8-week term calendar and entail 32 hours of contact time. Students learn economic theory and econometrics, code in R and STATA, and learn SQL, PowerBI, and Tableau all in one year. Graduates are uniquely trained to help business managers and project leaders not only formulate decision problems, but communicate with IT people on what data and analysis may be needed. People with this training are increasingly in high demand.

Students enroll in an intensive Math Economics course during the month of August. The program culminates with a capstone experience, which depends on a student’s chosen track.

The program requires a minimum of 32 credit hours of coursework and a capstone experience. All students must complete four core classes. The program can be completed in 12 months. It begins with an August term in which Mathematical Economics is taught in a concentrated manner over two to three weeks. The August term is followed by two semesters of coursework. Some of the industry-track courses are scheduled on an 8-week term calendar and entail 32 hours of contact time. Students learn economic theory and econometrics, code in R and STATA, and learn SQL, PowerBI, and Tableau all in one year. Graduates are uniquely trained to help business managers and project leaders not only formulate decision problems, but communicate with IT people on what data and analysis may be needed. People with this training are increasingly in high demand.

Students enroll in an intensive Math Economics course during the month of August. The program culminates with a capstone experience, which depends on a student’s chosen track.

The program requires a minimum of 32 credit hours of coursework and a capstone experience. All students must complete four core classes.

Requirements

The program requires a minimum of 32 credit hours of coursework and a capstone experience. All students must complete four core classes.

Student Learning Outcomes

Core Competencies

• Utilize economic theory to formulate and solve optimization problems for consumer and firm decision making (e.g., marginal analysis).
• Apply statistical and econometric methods using programming languages to analyze and draw valid conclusions from data.
• Demonstrate an ability to formulate well-designed research projects.

Industry Track

• Apply principles of data analytics to store, manage, and visualize large datasets.
• Identify and demonstrate how economic theory, econometrics, and data analytics can be applied to decision making at an enterprise level.

Academic Track

• Apply advanced graduate-level microeconomic and macroeconomic theory to understand markets and the economy.
• Demonstrate an ability to comprehend and critique current scholarly research in macroeconomics and microeconomics.