COMPUTER SCIENCE (CS)

Degrees Offered: Ph.D., M.S.

This program is offered in Durham.

The Department of Computer Science offers both the M.S. and the Ph.D. in computer science.

The M.S. program is designed to help students increase the breadth and depth of their computer science knowledge, strengthen their software development skills, and build their research skills.

The Ph.D. program is designed to develop a student's ability to carry out advanced research, as well as ensure the breadth and depth of computer science knowledge required to obtain a faculty position in academia or a research position in industry or at a national laboratory.

Admission Requirements

The computer science graduate program is designed for students with a B.S. degree in computer science. However, applications from students whose undergraduate degree is not in computer science are also welcome. In this case, a well-defined set of undergraduate prerequisites must be completed as part of the M.S. program of study. The prerequisites include an introduction to computer science, object-oriented programming, data structures, machine organization, operating systems, and computer science theory.

These prerequisites can be satisfied at UNH by the following undergraduate courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 415</td>
<td>Introduction to Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td>CS 416</td>
<td>Introduction to Computer Science II</td>
<td>4</td>
</tr>
<tr>
<td>CS 515</td>
<td>Data Structures and Introduction to Algorithms</td>
<td>4</td>
</tr>
<tr>
<td>CS 520</td>
<td>Assembly Language Programming and Machine Organization</td>
<td>4</td>
</tr>
<tr>
<td>CS 620</td>
<td>Operating System Fundamentals</td>
<td>4</td>
</tr>
<tr>
<td>CS 659</td>
<td>Introduction to the Theory of Computation</td>
<td>4</td>
</tr>
</tbody>
</table>

Some students may need to take additional mathematics classes.

Students without a B.S. or M.S. in computer science are not normally admitted directly into the Ph.D. program, but it is possible to transfer from the M.S. program to the Ph.D. program.

Applicants must submit current scores (within five years) for the general test of the GRE. Students who have taken computer science courses at UNH can request a waiver of this requirement.

https://ceps.unh.edu/computer-science/

Programs

- Computer Science (Ph.D.)
- Computer Science (M.S.)

Courses

Computer Science (CS)

CS 800 - Internship
Credits: 1
Provides an opportunity to apply academic experience in settings associated with future professional employment. A written proposal for the internship must be approved by the department chair. The proposal must specify what the student will learn from the internship, why the student is properly prepared for the internship, and what supervision will be available to the student during the internship. A mid-semester report and a final report are required. Permission required. Computer Science majors only. Cr/F.
Repeat Rule: May be repeated for a maximum of 3 credits.
Grade Mode:

CS 812 - Compiler Design
Credits: 3
Formal languages and formal techniques for syntax analysis and parsing; organization of the compiler and its data structures; code generation. LL and LR parsing; automatic generation of scanners and parsers from high-level descriptions. Implementation of features from imperative and object-oriented languages. Students are required to design and implement a compiler for a simple language. Prereq: Machine Organization.
Grade Mode: Letter Grade

CS 819 - Advanced Programming with Object-Oriented Design
Credits: 3
Advanced problem solving using software design, development and testing techniques that follow the software development lifecycle. Object-oriented programming and design. Advanced data structures and algorithm analysis. Prereq: strong prog. skills, exp. with C/C++, match org.
Grade Mode: Letter Grade

CS 820 - Systems Programming
Credits: 3
Study and simulation of various types of systems that include assemblers, linkers, memory management, concurrency and other resource management techniques. Prereq: Machine Organization, Operating Systems Fundamentals or equivalent.
Grade Mode: Letter Grade

CS 822 - Cloud Computing Systems
Credits: 3
The course covers a variety of topics in cloud computing systems, or more precisely, distributed systems that enable modern cloud computing. The topics include virtualization and its impact on system design, cloud-scale storage, cloud data processing and machine learning systems, and cloud configuration management. The course also covers the latest advancements in cloud computing/systems, IoT, edge, and fog computing. Prereq: Operating Systems Fundamentals.
Grade Mode: Letter Grade
CS 823 - Performance Evaluation of Computer Systems
Credits: 3
This class introduces the main concepts, techniques, and tools needed
to evaluate the performance of computer systems under various
configurations and workloads. The techniques allow one to perform
capacity planning based on quality of service requirements of users
and workload characteristics. The course is mainly based on the
use of analytic queuing network models of computer systems. The
performance techniques are applied to study the performance of
centralized, distributed, parallel, and client/server systems. The course
also discusses performance measuring tools for operating systems such
as Unix and Windows NT. Prereq: operating systems fundamentals or
equivalent.
Grade Mode: Letter Grade

CS 825 - Computer Networks
Credits: 3
Introduction to fundamental concepts of computer networks and
exploration of widely-used networking technologies. Topics include
principles of congestion and error control; network routing; local,
wireless and access networks; application protocol design; and network
programming. In-depth discussion of the Internet suite of protocols.
Grade Mode: Letter Grade

CS 827 - Software Security
Credits: 3
Mechanisms and implementation of techniques in software security.
Various fundamental security topics include cryptography, access
control, protocols, software vulnerabilities, and reverse engineering.
Prereq: Machine Organization, Assembly Language, Fundamentals of
Cybersecurity.
Grade Mode: Letter Grade

CS 830 - Introduction to Artificial Intelligence
Credits: 3
In-depth introduction to artificial intelligence concentrating on aspects
of intelligent problem-solving. Topics include situated agents, advanced
search techniques, knowledge representations, logical reasoning
techniques, reasoning under uncertainty, advanced planning and control,
and learning. Prereq: data structures.
Grade Mode: Letter Grade

CS 833 - Mobile Robotics
Credits: 3
An introduction to the foundational theory and practices in mobile
robotics. Topics include Kinematics of wheeled mobile robots. Seniors for
mobile robots, robot navigation and perception, robot vision, localization
and mapping of mobile robots. Hands-on experience directed towards
implementation with a real robot. Prereq: Programming or permission of
instructor.
Grade Mode: Letter Grade

CS 835 - Introduction to Parallel and Distributed Programming
Credits: 3
Programming with multiple processes and threads on distributed
and parallel computer systems. Introduces programming tools and
techniques for building applications on such platforms. Course
requirements consist primarily of programming assignments. Prereq:
Undergraduate course in operating systems fundamentals and computer
organization; or permission.
Grade Mode: Letter Grade

CS 845 - Formal Specification and Verification of Software Systems
Credits: 3
Course focuses on the formal specification and verification of reactive
systems, most notably concurrent and distributed systems. Topics
relevant to these systems, such as non-determinism, safety and liveness
properties, asynchronous communication or compositional reasoning, are
discussed. We rely on a notation (T LA+, the Temporal Logic of Actions)
and a support tool (TLC, the TLA+ Model Checker). Prereq: Students are
expected to be knowledgeable in logic and to be able to write symbolic
proofs in predicate calculus. A basic understanding of the notions of
assertion, precondition, and post-condition is also assumed.
Grade Mode: Letter Grade

CS 850 - Machine Learning
Credits: 3
An introduction to fundamental concepts and common methods in
machine learning. In addition to theoretical topics, the course involves
hands-on experience in making predictions using synthetic and real-world
datasets. Prereq: Statistics, Programming or permission of instructor.
Grade Mode: Letter Grade

CS 853 - Information Retrieval
Credits: 3
Fundamental algorithms and techniques for text processing and text-
based information retrieval systems. Topics include how to build an end-
to-end information retrieval system, such as a Web search engine. Prereq:
Data Structures.
Grade Mode: Letter Grade

CS 855 - Computer Vision
Credits: 3
Studying techniques that make a machine 'see' and 'understand' the
world in a human-like fashion. The course discusses the theory behind
common computer vision techniques and trains students on designing
their own algorithms for understanding image or video. Prereq: Statistics
course, and Programming course or permission of instructor.
Grade Mode: Letter Grade

CS 857 - Mathematical Optimization for Applications
Credits: 3
This course introduces the foundations of mathematical optimization
and reinforces them via applications. The content includes convex
optimization, first and second-order methods, constrained problems,
duality, linear and quadratic programming, as well as discrete and
non-convex optimization. Applications will focus on machine learning
methods but also include problems from engineering and operations
research. Prereq: MATH 426; Programming proficiency in MATLAB, R,
Java, C, Python, or equivalent.
Equivalent(s): MATH 857
Grade Mode: Letter Grade

CS 858 - Algorithms
Credits: 3
An introduction to important concepts in the design and analysis of
algorithms and data structures, including implementation, complexity,
analysis, and proofs of correctness. Prereq: understanding of basic
data structures, familiarity with proof methods and basic concepts from
discrete mathematics and the ability to program with recursion.
Grade Mode: Letter Grade
CS 861 - Programming Language Concepts and Features
Credits: 3
Explores the main features of modern, high-level, general-purpose programming languages from the user (programmer) standpoint. Students learn how specific features of programming languages can be used effectively in solving programming problems. The course is also an opportunity to use paradigms that expand on simple imperative programming, such as object-oriented, functional and concurrent programming. Prereq: Operating systems fundamentals and Computer organization, some knowledge of Java.
Grade Mode: Letter Grade

CS 870 - Computer Graphics
Credits: 3
Input-output and representation of pictures from hardware and software points of view; interactive techniques and their applications; three-dimensional image synthesis techniques. Prereq: data structures.
Grade Mode: Letter Grade

CS 871 - Web Programming Paradigms
Credits: 3
In this course you will learn languages to program the Web. Languages integrated into browsers, like Javascript, and languages invoked on the server, like Ruby. You will also learn about frameworks, like Rails, and various techniques used to support the programming process. In addition, you will learn languages you will need to create, modify and process Web documents. Although we will learn how to read and write in these languages, our primary goal will be on understanding how the design of these multi-paradigm dynamic languages support the process of developing Web applications. Prereq: programming language concepts or permission.
Grade Mode: Letter Grade

CS 875 - Database Systems
Credits: 3
Database analysis, design, and implementation. Focus on the relational model. Data description and manipulation languages, schema design and normalization, file and index organizations, data integrity and reliability. Usage of selected DBMS. Prereq: Data Structures.
Grade Mode: Letter Grade

CS 880 - Topics
Credits: 1-4
Material not normally covered in regular course offerings. May be repeated.
Grade Mode: Letter Grade

CS 898 - Master's Project
Credits: 3
Grade Mode: Letter Grade

CS 899 - Master's Thesis
Credits: 1-6
May be repeated up to a maximum of 6 credits. Cr/F.
Repeat Rule: May be repeated for a maximum of 6 credits.
Grade Mode:

CS 900 - Graduate Seminar
Credits: 1
Regularly scheduled seminars presented by outside speakers, UNH faculty, and graduate students. Topics include reports of research ideas, progress, and results. Cr/F.
Grade Mode:

CS 920 - Distributed Systems and Algorithms
Credits: 3
Covers fundamental topics in distributed systems: time, global state, synchronization, election, consensus, distributed file systems, security. Also includes a study of several distributed applications. Prereq: Operating System fundamentals or equivalent.
Grade Mode: Letter Grade

CS 925 - Advanced Computer Networks
Credits: 3
Grade Mode: Letter Grade

CS 927 - Software Security Analysis
Credits: 3
This course covers advanced research topics in software security. The main focus is automatic software analysis techniques, such as symbolic execution, taint analysis, and fuzz testing.
Grade Mode: Letter Grade

CS 931 - Planning for Robots
Credits: 3
Students read research papers and perform a research project pertaining to algorithms for planning and decision-making for robots, with an emphasis on autonomous systems. Advanced undergraduate students in Computer Science and graduate students from other disciplines are eligible to take the course with the instructor's permission. Prereq: CS 830 or CS 833 or permission of instructor.
Repeat Rule: May be repeated for a maximum of 9 credits.
Grade Mode: Letter Grade

CS 933 - Human Robot Interaction
Credits: 3
Human robot interaction (HRI) is a multidisciplinary research domain that investigates the issues involved with smooth integration of robots in the human society. This course will discuss the evolution of HRI research over the past two decades with an emphasis on HRI algorithms that promote safe, meaningful, and goal-oriented human-robot interactions. Topics also include experimental design methodologies commonly used in HRI studies. Prereq: CS 830 or CS 833 or CS 850 or instructor’s permission.
Repeat Rule: May be repeated for a maximum of 6 credits.
Grade Mode: Letter Grade

CS 950 - Advanced Machine Learning
Credits: 3
Course covers advanced machine learning techniques for making good decisions driven by data. The main focus areas are reinforcement learning, exploration-exploitation trade-off, mathematical optimization methods, and practical applications. Group-based Project on a selected topic. Prereq: instructor’s permission.
Repeat Rule: May be repeated for a maximum of 9 credits.
Grade Mode: Letter Grade
CS 953 - Data Science for Knowledge Graphs and Text
Credits: 3
This course covers basic and advanced algorithms and techniques for data science with knowledge graph and text data. This includes a wide range of algorithms for graph processing, text processing, and information retrieval with a focus of knowledge graphs and text from knowledge articles. Prereq: CS 853 or Permission of Instructor.
Grade Mode: Letter Grade

CS 980 - Advanced Topics
Credits: 3
Grade Mode: Letter Grade

CS 998 - Independent Study
Credits: 1-6
Grade Mode: Letter Grade

CS 999 - Doctoral Research
Credits: 0
Cr/F.
Grade Mode:

Faculty

https://ceps.unh.edu/computer-science/faculty-staff-directory