Civil and Environmental Engineering (CEE)

Degrees Offered: Ph.D., M.Eng., M.S.

This program is offered in Durham.

The Department of Civil and Environmental Engineering offers the master of engineering degree in civil engineering, the master of science degree in civil engineering, and a Ph.D. degree in civil engineering with the following areas of specialization: structural, materials, geotechnical, water resources, and environmental engineering. Interested applicants are encouraged to visit the department website for information on current research in the department and to contact faculty members in their area of interest directly. The department website has information on program requirements and frequently asked questions. Applicants with questions not answered by the department or graduate school website should write to the graduate program coordinator for specific information.

Admission Requirements

An applicant must have completed a baccalaureate science degree in engineering, mathematics, or science at an accredited college or university. If coursework or laboratory experience is deficient, an admitted student will be required to fulfill, without graduate credit, all undergraduate prerequisites for graduate courses. In some cases, the student’s adviser may require additional undergraduate courses in order to achieve a well-integrated program of study. Applicants must submit current scores (within five years) from the general test of the GRE, unless waived by the graduate coordinator (for current UNH CEE undergraduates or current scores from the general test of the GRE, unless waived by the graduate coordinator (for current UNH CEE undergraduates). Applicants must submit current scores (within five years) from the general test of the GRE, unless waived by the graduate coordinator (for current UNH CEE undergraduates). Applicants must submit current scores (within five years) from the general test of the GRE, unless waived by the graduate coordinator (for current UNH CEE undergraduates or ENVE - environmental engineering).

For more information on the Civil and Environmental Engineering Graduate Program, please email CEE.Graduate@unh.edu.

https://ceps.unh.edu/cee/graduate-programs

Courses

Civil and Environmental Engineering (CEE)

CEE 800 - Building Information Modeling
Credits: 3
Building Information Modeling (BIM) is the process of generating and managing project data during its life cycle by integrating 3D multidisciplinary drawings with dynamic scheduling and visualization. BIM provides a digital representation of project data to facilitate the exchange of information beyond the standard two-dimensional plan set. This course introduces students to the fundamentals of model creation, scheduling, material take-offs, visualizations, and animations that improve the communication of information to potential clients. Prereq: AUTOCAD Experience or by permission.

CEE 804 - Transportation Engineering and Planning
Credits: 3
Fundamental relationships of traffic speed, density, and flow applied to public and private modes of transport. Principles of demand forecasting and urban systems planning. Prereq: permission.

CEE 805 - Introduction to Sustainable Engineering
Credits: 3
This course teaches knowledge and hands-on skills in conducting environmental life cycle assessment (LCA), which is a widely used technique by industries, academics, and governments. Students will learn to use popular LCA software (e.g., SimaPro), apply proper LCA techniques, critically analyze LCA results, and provide client-oriented suggestions during this course. Class time is primarily devoted to a combination of lectures and computer labs.

CEE 806 - Environmental Life Cycle Assessment
Credits: 3
This course gives an overview of green designs and sustainable practices in building construction. We cover technical topics and requirements of a nationally recognized rating system (LEED), with a specific focus on Green Building Design and Construction. Students are introduced to basic building designs and systems related to sustainability. Additionally, they learn about green design topics such as site plans, water and energy efficiency, material and resources usage, environmental quality and renewable energy source. As an outcome of the course, students are able to assess and incorporate green technologies and designs into building projects. They are prepared to contribute in building projects that target LEED certifications. Students are also capable to engage in green practices within their existing built environments.

Programs

- Civil and Environmental Engineering (Ph.D.) (http://catalog.unh.edu/graduate/programs-study/civil-environmental-engineering/civil-environmental-engineering-phd)
- Civil and Environmental Engineering (M.Eng.) (http://catalog.unh.edu/graduate/programs-study/civil-environmental-engineering/civil-environmental-engineering-meng)
- Civil and Environmental Engineering (M.S.) (http://catalog.unh.edu/graduate/programs-study/civil-environmental-engineering/civil-environmental-engineering-ms)
CEE 820 - Solid and Hazardous Waste Engineering
Credits: 3
A thorough examination of the problems which exist in hazardous and solid waste management will be presented in terms of the current regulations and engineering approaches used to develop solutions. Topics will include risk-based decision making, transport and fate of contaminants, and the fundamental physical, chemical and biological concepts which make up the basis for technological solutions to these waste management problems. Case studies will be used throughout the course to highlight key concepts and provide real-world examples.

CEE 822 - Introduction to Marine Pollution and Control
Credits: 4
Introduction to the sources, effects, and control of pollutants in the marine environment. Dynamic and kinetic modeling; ocean disposal of on-shore wastes, shipboard wastes, solid wastes, dredge spoils, and radioactive wastes; and oil spills. Prereq: CEE 620 or permission.

CEE 823 - Environmental Water Chemistry
Credits: 4
Emphasizes the use of chemical equilibrium principles and theory, calculations, and applications of ionic equilibrium stresses. Topics include thermodynamics, kinetics, acid/base, complexation, precipitation/dissolution, and redox equilibria. Computer equilibrium modeling is presented. Prereq: general chemistry or equivalent.

CEE 824 - Environmental Engineering Microbiology
Credits: 4
Concepts of environmental engineering microbiology including microbial metabolism, growth kinetics, bioremediation applications, mass transfer kinetics and effects of environmental parameters. Coursework includes reading and discussion of the microbial literature. Laboratories cover microbiological monitoring and biological treatment experiments. Prereq: CEE 620 or permission.

CEE 830 - Public Health Engineering for Rural and Developing Communities
Credits: 3
The design principles are important to the student specific information that can be used to design public health control facilities such as small water treatment systems and on-site wastewater disposal systems. Engineering control methods taught are particularly applicable to rural areas and developing countries. Prereq: permission.

CEE 832 - Solid and Hazardous Waste Design
Credits: 4
Selection, design, and evaluation of unit processes employed in the treatment of solid wastes and hazardous wastes will be studied. Topics include design of materials recovery facilities, landfills, waste-to-energy facilities and hazardous waste site remedial technologies. A group term project taken from a real-world project will be required. An oral presentation by the group and preparation of a final written engineering report including alternative evaluation, permits, scheduling and economic analysis will be required from each group. Prereq: CEE 720. permission.

CEE 833 - Public Infrastructure Asset Management
Credits: 4
The course provides a thorough examination of the growing engineering field of Public Infrastructure Assess Management (IAM). The course enables the student to design an IAM system. It touches upon all types of public infrastructure with a particular focus on water infrastructure for the semester design project. Students build upon their engineering economics and project engineering skills and use simple IAM software along with GIS applications. Practice leaders from the industry provide guest lectures throughout the semester. A focus on triple bottom line or the Societal, Environmental and Economic aspects of IAM are included. The format is a modified team based design learning experience providing practice in processing of technical lecture material, personal performance evaluation (frequent quizzes) and team based performance evaluation. Student groups will present their design to the class and provide a written engineering report. Pre- or Coreq: CEE 502 and CEE 620.

CEE 835 - Properties and Production of Concrete
Credits: 3
Basic properties of hydraulic cements and mineral aggregates and their interactions in the properties of plastic and hardened concrete; modifications through admixtures; production handling and placement problems; specifications; quality control and acceptance testing; lightweight, heavyweight, and other special concretes. Prereq: CEE 635 or permission.

CEE 836 - Asphalt Mixtures and Construction
Credits: 3
Specification of asphalt cements, aggregates and proportioning of mixture constituents for paving applications. Asphalt mixture design methods, production, construction, and quality control are discussed. Current and new material production and construction technologies are introduced. Prereq: CEE 635 or permission.

CEE 848 - Pavement Design Project
Credits: 1
Semester long design project accompanying CEE 849 Pavement Design Analysis. The design project will require weekly meetings (either online or in person) for the duration of the semester. Meeting times will be arranged based on student schedules.
Co-requisite: CEE 849

CEE 849 - Pavement Design Analysis
Credits: 3
Introduction to flexible and rigid pavement design and analysis for highways and airports. Examines design inputs, materials, analysis methods, design tools, and maintenance treatments. Prereq: CEE 635 and CEE 665.

CEE 850 - Echohydrology
Credits: 3
Introduction to ecohydrological concepts in terrestrial and riverine systems. Topics include the historical practices, resources management impacts, hydrologic variability and the relationships among water and ecology, vegetation, biology, geomorphology, and water quality. Prereq: CEE 854 or ESCI 805; or permission.

CEE 851 - Open Channel Flow
Credits: 3
Energy and momentum principles in open channel flow; flow resistance; channel controls and transitions; unsteady flow concepts and dam failure studies. Modeling with HEC programs. Prereq: CEE 650 or permission.
CEE 854 - Engineering Hydrology
Credits: 3
Hydrologic cycle, probability theory related to hydrology and the design of water resources structures, water flow, flood discharge prediction, hydrograph development, hydraulic and hydrologic river routing, reservoir routing, theory of storage, reservoir operations, hydropower development, modeling of watershed hydrology with program HEC-1, HEC-HMS, multipurpose projects.

CEE 855 - Design of Pressurized Water Transmission Systems
Credits: 4
Theory developed for individual components to large complex systems. Analysis and designs of components and systems. Topics include steady and unsteady closed conduit flow, valves and meters, pump requirements, pump selection, system planning and layout, water hammer, and system operation and maintenance. Pressure system modeling with program EPANET. Prereq: Fluid mechanics, or permission.

CEE 857 - Coastal Engineering and Processes
Credits: 3
Introduction to small amplitude and finite amplitude wave theories. Wave forecasting by significant wave and wave spectrum method. Coastal processes and shoreline protection. Wave forces and wave-structure interaction. Design of coastal structures. Introduction to mathematical and physical modeling. Prereq: CEE 650 or permission. (Also offered as ME 857 and OE 857.)

CEE 858 - Stormwater Management Designs
Credits: 3
Historic review of stormwater management leading up to the current regulatory framework. Overview of stormwater management strategies, strategy selection and the targeting of specific contaminants, contaminant removal efficiencies, construction and site selection, and system maintenance. Hydrologic concepts including watershed and storm characteristics, design hydrology (peak flows, storm and treatment volumes), hydrograph routing, and critical review of hydrology and drainage reports. Design and sizing of treatment systems including conventional BMPs, low impact development, and manufactured devices. Rainfall runoff calculations with US SCS TR55 model. Prereq: Fluid mechanics or permission.

CEE 859 - Stream Restoration
Credits: 4
Explores the assessment, planning, design, engineering, and monitoring of stream and watershed practices intended to protect and restore the quality and quantity of flowing and surface waters and stream corridors. Lecture material covers hydrology, geomorphology, and ecosystems, with the intent of understanding the variables associated with stream systems and their interplay. Students measure field variables and then are challenged with actual designs. Examples of stream restoration issues include in-stream flow, dam removal, induced recharge, improvements to fish habitat, and channel stabilization. Prereq: CEE 650.

CEE 865 - Engineering Behavior of Soils
Credits: 4

CEE 866 - Introduction to Geotechnical Earthquake Engineering
Credits: 3
Overview of earthquake source mechanisms; magnitude and intensity; seismicity of the U.S.A. Dynamics of simple structures; response spectra. Selection of design parameters; source, magnitude, input records. Measurement of dynamic characteristics of soils; site response, liquefaction, and ground deformation. Prereq: CEE 878 or permission.

CEE 867 - Geological Engineering
Credits: 3

CEE 868 - Geo-Environmental Engineering
Credits: 3
Soil composition and structure; hydrogeology; attenuation and contaminant transport; containment design including landfills, geosynthetics for liners and covers, leachate collection systems, vertical cutoff walls, and stability analyses; geo-environmental site characterization and investigation using geotechnical and geophysical methods; ground water, soil and gas monitoring, and sampling; remediation including in-situ and ex-situ techniques and treatment methods. Prereq: CEE 665 or permission.

CEE 878 - Foundation Design I
Credits: 4
Foundation design based on subsurface investigation and characterization using current methods of laboratory and in situ testing. Use of consolidation theory and bearing capacity theory for the design of shallow foundations, including footings and rafts. Basic design of pile foundations. Earth pressure theory applied to design of retaining walls. Slope stability theory and applications. Prereq: CEE 665 or permission.

CEE 879 - Foundation Design II
Credits: 3
Advanced pile and pier design under vertical and lateral loads. Slope stability by circular and noncircular arc methods. Design of flexible bulkhead walls and mechanically stabilized walls. Excavation and dewatering. Soil and site improvement. Prereq: CEE 878 or permission.

CEE 880 - Matrix Structural Analysis and Modeling
Credits: 3
Modeling and analysis of determinate and indeterminate structures by matrix computer methods. Creation of matrix elements using compatibility, equilibrium, and consecutive relationships. Plane trusses, beams, frames, and space trusses. Prereq: CEE 680 or permission.

CEE 881 - Dynamics of Structures
Credits: 3

CEE 889 - Timber Design
Credits: 3
CEE 890 - Structural Design in Masonry
Credits: 3
Introduces the design of reinforced masonry structural members by
the stress and strength method and considering deflection and other
servicability performance criteria. Includes development of wind and
seismic load, curtain wall, shear wall, lintels and columns. Prereq: CIE 635, 680; or permission.

CEE 891 - Reinforced Concrete Design
Credits: 4
Introduction to the design of reinforced concrete structural members by
the strength method and considering deflection performance. Includes
loads, approximate analysis, slabs, beams, and columns. Prereq: CEE 635, 680; or permission.

CEE 892 - Pre-stressed Concrete
Credits: 3
Analysis and design of pre-stressed and post-tensioned concrete
sections in flexure and shear. Strength, deflection, and losses in flexural
members. Optimization of section and pre-stressing force selection.
Prereq: CEE 891 or permission.

CEE 893 - Structural Design in Steel
Credits: 4
Introduction to steel member design, including horizontal and vertical
members for design and analysis of buildings. Examines design
inputs, material choice, analysis methods and design and construction
methodologies. Prereq: CEE 635 and CEE 680.

CEE 894 - LRFD Bridge Design
Credits: 3
AASHTO LRFD Bridge Design Specifications using SI units. Design
objectives, loads, load case analysis and selection, load distributions,
static analysis, and design for axial loads, flexure, and shear. Design of
slender columns, composite beams, and plate girders. Prereq: senior-level
structural design course or permission.

CEE 895 - Independent Study
Credits: 1-4
A limited number of qualified graduate students will be permitted to
pursue independent studies under faculty guidance. May be repeated.

CEE 896 - Special Topics
Credits: 1-4
Advanced or specialized topics not normally covered in regular course
offerings. May be repeated, but not in duplicate areas. Prereq: permission.
Special Fee.

CEE 897 - Masters Student Seminar
Credits: 1
Topics of interest to graduate students and staff; reports of research
ideas, progress, and results; lectures by outside speakers. Continuing
course: instructor may assign IA grade (continuous grading) at the end of
one semester. Course held simultaneously with CEE 997.

CEE 898 - Master's Project Paper
Credits: 3
Concluding project paper required of Master's level students who utilize
the non-thesis option. Prereq: permission. CEE majors only.

CEE 899 - Master's Thesis
Credits: 1-6
May be repeated up to maximum of 6 credits. Cr/F.

CEE 931 - Advanced Physicochemical Treatment Design
Credits: 4
Selection, design, and evaluation of advanced unit processes employed
in physicochemical treatment of waters, wastewaters, and hazardous
wastes. Discussion on preparation of alternative designs and economic
analysis. Emphasis on treatment schemes based on experimental
laboratory or pilot studies. Prereq: undergraduate-level course in water
and waste water engineering or water chemistry, or permission. Lab.

CEE 934 - Advanced Bioenvironmental Engineering Design
Credits: 4
Theoretical and experimental examination of the fundamental parameters
used in selection, design, and operation of biological treatment processes
for waters, wastewaters, and hazardous wastes. Topics include design
and evaluation of aerobic and anaerobic processes, suspended and fixed-
film processes, and advanced biological water and wastewater treatment
processes. Prereq: environmental engineering microbiology course, or
permission.

CEE 936 - Advanced Asphalt Materials
Credits: 3
Examination of chemical composition of asphalt cements, current
technologies for modification, and inclusion of recycled materials to
meet desired physical properties. Advanced characterization of asphalt
materials, modelling, advanced mixture design tools. Prereq: CEE 836 or
permission.

CEE 949 - Advanced Pavement Design and Analysis
Credits: 3
Advanced flexible pavement design and analysis including rehabilitation/
overlay design. Includes development of mechanistic-empirical methods,
advanced pavement structural analysis, and advanced material
characterization. Prereq: CEE 849 or permission.

CEE 951 - Statistical Hydrology
Credits: 3
Course examines statistical methods used to address water resources
planning and management problems involving uncertainty objectives and
hydrologic inputs. Application of statistics and probability to uncertainty
in the description, measurement, and analysis of hydrologic variables
and processes, including extreme events, error models, simulation, and
sampling. Prereq: A hydrology course, basic statistics, or permission.

CEE 954 - Advanced Groundwater Topics
Credits: 3
Review of Darcy's Law for confined and unconfined aquifers, linearization
techniques, draw down computations under varying boundary conditions,
solutions to the inverse problem, drainage theory, recharge theory,
two-phase flow, succession of steady states modeling, and borehole
geophysics. Prereq: ESCI 810.

CEE 955 - Advanced Surface Water Hydrology
Credits: 3
Occurrence and distribution of water by natural processes including
atmospheric thermodynamics, precipitation, runoff, infiltration, water
losses, flood routing and catchment characteristics, analysis, and
methods of runoff prediction. This course builds from a foundation of
fluid mechanics in the environment to address essentials of modern
hydrology. An emphasis is placed on fundamental concepts, first
principles, and the scientific basis of approximations. Prereq: Calculus
and Fluid Mechanics.
CEE 959 - Advanced Stream Restoration Topics
Credits: 3
Course focuses on: stream crossing analysis and design, dam removal, and designs for aquatic species passage. Pre- or Coreq: CEE 759 or equivalent.

CEE 965 - Advanced Soil Mechanics
Credits: 4
Numerical and physical modeling of the mechanical behavior of soils. Cam-clay and other predictive models. Laboratory studies of mechanical behavior and measurement of input parameters to soil models. Prediction of soil behavior based on laboratory results. Applications to numerical modeling of soil masses. Prereq: soil mechanics, and foundation design, or permission.

CEE 966 - Laboratory Geotechnical Testing
Credits: 4
Introduction to geotechnical modeling, soil constitutive modeling, introduction to numerical modeling and applications, physical modeling, centrifuge modeling, and theoretical modeling. Prereq: CEE 665, CEE 778, or equivalent, or permission.

CEE 967 - In Situ Geotechnical Testing
Credits: 3
In situ geotechnical testing methods for site characterization; theory and practice. Geotechnical testing methods include the piezocone, the pressuremeter, the flat plate dilatometer, the field vane, and the standard penetration test. Includes sampling techniques, geophysical exploration, and recent innovations in site and soil characterization. Prereq: CEE 965 or equivalent.

CEE 968 - Soil-Structure-Interaction
Credits: 3
Introduction to soil-structure-interaction, elastic and plastic analyses, serviceability calculations, relative foundation stiffness, Pile-soil-interaction, flexible retaining walls, tunnel lining, bridge abutments, dynamic soil-structure-interaction, case studies, and modeling techniques. Prereq: CEE 665 and 778; or permission.

CEE 980 - Nonlinear Structural Analysis
Credits: 3
This course deals with the theory, implementation, and application of methods of geometric and material nonlinear analysis. Geometric nonlinear analysis entails solving for equilibrium on the deformed configuration on the structure. Material nonlinear analysis involves inelastic behavior of materials. Practical design implications include problems of structural stability and inelastic static/dynamic analysis. Emphasis is on methods applied to frame structures comprised of line-type elements; however, the basic concepts also apply to general finite element methods. Prereq: CEE 780/CEE 880 or equivalent.

CEE 993 - Advanced Structural Steel Design
Credits: 3
Advanced design of structural steel elements according to the AISC Load and Resistance Factor Method as applied to advanced topics in steel design. Emphasis will be placed on theory involved in the development of the design code requirements. Course design project will expand on these topics and include experimental work as appropriate. Prereq: CEE 793/CEE 893 or permission.

CEE 995 - Problems
Credits: 2-4
The study and investigation of problems selected to meet the needs of the students.

CEE 997 - Doctoral Student Seminar
Credits: 1
Topics of interest to graduate students, faculty, and staff; requires two presentations from doctoral students on their research ideas, progress, and results; lectures by outside speakers. Continuing course: instructor may assign IA grade (continuous grading) at the end of one semester. Course held simultaneously with CEE 897.

CEE 999 - Doctoral Research
Credits: 0
Cr/F.

Faculty
See http://ceps.unh.edu/faculty/cee for faculty.