HEALTH DATA SCIENCE (HDS)

HDS 800 - Mathematics and Statistics for Health Data Science
Credits: 3
This course covers the foundations of probability and inferential statistics as well as foundations of linear algebra and matrices. After completion of this course, students should be comfortable with performing basic analysis of data including descriptive statistics, data visualization and appropriate statistical tests. Different probability distributions will be introduced along with hypothesis testing, confidence intervals, linear regression, and ANOVA.
Grade Mode: Letter Grading

HDS 801 - The U.S. Healthcare System
Credits: 3
Focuses on the organization, financing, and delivery of healthcare in the U.S. Contrasts the private and public sectors and examines the effects of market competition and government regulation. Examines the ways that medical providers are paid, and explores the major issues currently facing physicians, hospitals, and the pharmaceutical industry. Discusses several potential small-scale and large-scale reforms to the healthcare system and evaluates their likely effects on healthcare spending, quality of care, and access to care.
Equivalent(s): ADMN 801
Grade Mode: Letter Grading

HDS 802 - Programming in Healthcare Environments
Credits: 3
This course covers using Python as a programming language to write, implement, and design programs that are relevant to various aspects of programming in a health setting. After completion of this course, students should be comfortable with the basic data structures in Python and R (including arrays, dictionaries, and dataframes), conditional logic and iterators, writing Python and R functions, and using Python libraries to read external data and perform data manipulations and data analysis.
Grade Mode: Letter Grading

HDS 803 - Translation of Health Data
Credits: 3
This course will give you the skills you need to leverage data to reveal valuable insights and advance your career. This course teaches you the visualization skills necessary to be effective Data Storytellers which helps engage your audience in a story about the data. This course focuses on concepts as well as hands-on experience of presenting data from initial concepts to final presentation by creating meaningful displays of quantitative and qualitative data to facilitate peer/managerial decision making. Prereq: HDS 801.
Grade Mode: Letter Grading

HDS 804 - Health Data Systems
Credits: 3
In this course, students will learn the landscape of data used in healthcare settings, engage in active case applications and case studies, and propose a decision support system improvement. It examines modern decision support systems, types of applications, both mobile and web based, enterprise versus cloud-based systems. Specifically examined will be the Electronic Health Record (EHR) and other clinical and administrative information systems. Also examined will be interoperability and regulatory requirements. Prereq: HDS 801.
Grade Mode: Letter Grading

HDS 805 - Applied Machine Learning in Healthcare
Credits: 3
This course covers the foundations of machine learning in healthcare systems including algorithms related to classification and regression prediction in supervised setting, clustering and dimension reduction in an unsupervised setting. Topics include data preprocessing and classification techniques such as logistic regression, support vector machines, KNN, Naïve Bayes, ensemble methods such as random forests, boosted trees, XGBoost, dimension reduction techniques such as principal components analysis, t-distributed scholastic neighborhood embedding, ISOMAP, locally linear embedding, UMAP, multidimensional scaling. Prereq: HDS 801, HDS 800, HDS 802.
Grade Mode: Letter Grading

HDS 806 - Outcomes Research
Credits: 3
This course examines the evidence developed through the lens of outcomes research relative to clinical care and public/population health initiatives. It explores the development of study design, developing a workable research question and associated proposed study methods. The course explores frequently used study designs, techniques for evaluating/selecting health outcomes measures, and analytical approaches appropriate to conducting health outcomes research. Students will construct an independent research protocol, which will be developed in increments as course evolves. Prereq: HDS 804.
Grade Mode: Letter Grading

HDS 807 - Unstructured Health Data
Credits: 3
This course covers the essential unstructured data formats, storage platforms and methods of retrieving and analyzing such data in the healthcare system. Specifically, the course will cover electronics health records, patient health portals, telemedicine videos, ICU sensor data, genomic data, biomedical literature, social media data, biomedical image data and physician notes. Prereq: HDS 805.
Grade Mode: Letter Grading

HDS 808 - Current Topics in Health Systems
Credits: 3
This course examines current health issues facing our country and world through the lens of data science. It will focus on one or more major health issues currently in the public debate, examine the issue from the known body of evidence, and suggest novel methods for better understanding the current constructs of the issues, its history, or new ways and/or data to expand the current context. Prereq: HDS 801.
Grade Mode: Letter Grading

HDS 811 - Health Data Science Practice
Credits: 3
In this course, students will work to develop a data science thesis project with both an outside mentor and a faculty advisor. This course essentially bridges the entire curriculum, but builds over the coursework to the final presentation at the students' second residency prior to completing the program. Each student on a team will be required to justify the completion of practicum hours. Prereq: HDS 808.
Grade Mode: Letter Grading
HDS 820 - Health Systems Informatics
Credits: 3
This course introduces students to data structures and data
manipulation found in US Health Systems from the perspective of a
data scientist in the role of health informaticist. Students will learn how
to conceptualize the data ecosystem from input and data collection,
secondary use, storage, retrieval and analysis. The course also promotes
understanding of health data coding, applicability and validity. Students
will explore health insurance claims data, public surveillance system data
and administrative system data. Prereq: HDS 801.
Grade Mode: Letter Grading

HDS 821 - Big Data Algorithms in Biological Sciences
Credits: 3
This course covers several topics in computational biology with a focus
on data science algorithms for processing massive sequencing data
on the cloud, such as processing data on Amazon Web Services (AWS).
Students will learn the prerequisites of data analysis on a cloud service
including storage of virtual private clouds, file systems and security as
well as the importance of maintaining a low-cost, high-efficiency work
environment. Prereq: HDS 802, HDS 805.
Grade Mode: Letter Grading

HDS 822 - AI and Deep Learning in Healthcare
Credits: 3
This course covers the essentials of deep learning artificial neural
network models. The course will cover topics like basic structure of ANN,
gradien descent, various cost functions, role of activation functions
in ANN, shallow vs deep learning, hyper parameter tuning, model
optimization for speed, regularization methods, transfer learning and the
newest of all generative adversarial networks (GAN). Prereq: HDS 807.
Grade Mode: Letter Grading

HDS 823 - Advanced Statistics in Healthcare
Credits: 3
This course covers the essential advanced statistical techniques
employed by Biostatisticians in clinical trials and healthcare research.
After completion of this course, students should be comfortable with
various advanced multivariate statistical techniques such as multiple
discriminant analysis (MDA), multiple analysis of variance (MANOVA),
Conjoint analysis, Factor analysis, multiple correspondence analysis
(MCA), and hierarchical linear modeling (HLM). Prereq: HDS 800.
Grade Mode: Letter Grading

HDS 890 - HDS Independent Study
Credits: 3-6
This course will be designed by the student and the instructor. Course
topics and deliverables will be established together and approved by the
supervising faculty. Credit hours (not to exceed 6-credit hours) will be
determined by the supervising faculty based on the size and scope of the
student’s intended project.
Grade Mode: Letter Grading