BIOLOGY (BIOL)

Course numbers with the # symbol included (e.g. #400) have not been taught in the last 3 years.

BIOL 400 - Professional Perspectives on Biology
Credits: 1
Views scope of biology and explores professional opportunities for biological sciences majors. Guest speakers from on-and-off campus present seminars and lead discussions on contemporary issues in biology. Departmental and interdepartmental major and option programs and strategies for achieving professional goals are discussed. Required for all first-semester biology majors. Cr/F.

BIOL 408 - Plants and Civilization
Credits: 4
Global experience of human interactions with plants and the ways in which plants have contributed to the development and the flourishing of human societies. Includes role of plants in providing sustenance, clothing and shelter, quest for spices, the historical consequences of plant explorations and exploitations, the power to heal or kill, plants in mythology and spiritual endeavors, plants that alter consciousness, plant diseases and human history, plants as energy for society, and the Green Revolution in global change and feeding the world in the future. Special fee.
Attributes: Biological Science(Discovery); Discovery Lab Course

BIOL 409 - Introductory Botany
Credits: 4
Plants in their natural environments: their structure, function, growth, reproduction, and evolutionary diversity. Special fee. Lab.
Attributes: Biological Science(Discovery); Discovery Lab Course

BIOL 410 - Principles of Molecular and Cellular Biology
Credits: 3
Introduction to structure and function of cells, tissues and organs, physiological processes; genes and heredity. No Laboratory. All COLSAS and pre-professional health students should take BIOL 411, (with lab).
Attributes: Biological Science(Discovery)

BIOL 411 - Introductory Biology: Molecular and Cellular
Credits: 4
Introduction to structure and function of cells, tissues and organs, physiological processes; genes and heredity. Required for majors in the biological sciences. Special fee. Lab. Students not permitted to enroll in BIOL 411 and BIOL 412 in the same semester.
Attributes: Biological Science(Discovery); Discovery Lab Course; Inquiry (Discovery)

BIOL 411H - Honors/Principles of Biology I
Credits: 4
Introduction to structure and function of cells, tissues and organs, physiological processes and genes and heredity. Required for majors in the biological sciences. Special fee. Lab.
Attributes: Biological Science(Discovery); Discovery Lab Course; Inquiry (Discovery)

BIOL 412H - Honors/Principles of Biology II
Credits: 4
The biology of organisms, including survey of kingdoms, behavior, evolution, and ecology. Required for majors in the biological sciences. Cannot be taken for credit after BIOL 411 or equivalent. Special fee. Lab.
Attributes: Biological Science(Discovery); Discovery Lab Course; Inquiry (Discovery)

BIOL 413 - Principles of Biology I
Credits: 4
Lecture and Laboratory introduction to biological principles; cell structure, function, replication, energetics and transport mechanisms; physiological processes; Mendelian, molecular genetics and gene technology. Required for students majoring in the life sciences. Cannot be taken for credit after BIOL 412 or equivalent. Special fee. Lab.
Attributes: Biological Science(Discovery); Discovery Lab Course; Inquiry (Discovery)

BIOL 414 - Principles of Biology II
Credits: 4
Lecture and laboratory survey of the five kingdoms of life; physiology of cells, tissues, organs, and organ systems; evolution; human impact on the biosphere. Required for students majoring in the life sciences. Cannot be taken for credit after BIOL 412 or equivalent. Special fee. Lab.
Attributes: Biological Science(Discovery); Discovery Lab Course

BIOL 415 - Professional Perspectives on Biology
Credits: 1
Describes the biology of organisms, including survey of kingdoms, behavior, evolution, and ecology. Required for majors in the biological sciences. Students not permitted to enroll in BIOL 411 and BIOL 412 in the same semester. Special fee. Lab.
Attributes: Biological Science(Discovery); Discovery Lab Course; Inquiry (Discovery)

BIOL 416 - Watershed Watch - Research Experience
Credits: 2
This course builds upon the experiences gained while conducting the field and laboratory research from BIOL 415 (Watershed Watch Summer Institute). Students will be expected to integrate the conceptual and hands-on components learned in BIOL 415 into their own independent scientific research projects conducted under the mentoring of a faculty advisor from their college or university campus. Using a seminar format, students will receive additional lecture and reading materials (via distance-learning tools), compare their research progress (e.g., problems and accomplishments) with the progress of other students on other campuses, and will integrate their findings into the larger studies of the Merrimack and Pasquotank River watersheds. Ultimately, students will present their results at the UNH Undergraduate Research Conference at the end of April. (IA grading). Prereq: BIOL 415 and instructor approval. May be repeated.
BIOL 420 - Introduction to Forensic Sciences
Credits: 4
This course provides an introductory survey of the Forensic Sciences. The focus is on the recognition, collection, preservation, and analysis of physical evidence related to crime scene investigations. Students will be presented with various state-of-the-art techniques utilized in the analysis of physical evidence, with the presumption that students do not necessarily have in-depth scientific or technical backgrounds (e.g., chemistry, biology, and/or physics). The goal of this class will be to provide students with an understanding of what criminalistics entails and to prepare them for additional, more in-depth classes in criminalistics or forensic science. Special fee.
Attributes: Biological Science(Discovery); Discovery Lab Course

BIOL 430 - Biology of the City
Credits: 4
This course explores biological systems, functions, and interaction of organisms in an urban environment. Using the campus as our laboratory, the course will progress from exploring the effects of urbanization on biodiversity, biological responses to urbanization, urban forestry, urban agriculture, and conclude with topics in sustainable urban development and conservation. Students in the course will develop an understanding of ecological concepts, problems, and solutions to improving ecological systems of urban areas.
Attributes: Biological Science(Discovery); Discovery Lab Course

BIOL 444A - Biotechnology and Society
Credits: 4
The history and science of biotechnology and genetic engineering of bacteria, plants, and animals including humans. Applications of DNA technology, cloning and genetic engineering to agriculture, biomedicine, industrial products, and environmental problems. Discussion of economic, social, environmental, legal, and ethical issues related to the applications of biotechnology and genetic engineering. No credit for students who have completed BSCI 422 (UNHM).
Attributes: Environment, TechSociety(Discovery); Inquiry (Discovery)

BIOL 444B - Current Controversial Issues in Biology
Credits: 4
An inquiry into current controversial issues in biology and their scientific and technical bases, but with an emphasis on exploring the various perspectives or beliefs related to each topic and their social and environmental implications.
Attributes: Biological Science(Discovery); Inquiry (Discovery)

BIOL 495 - Research Experience in Biological Sciences
Credits: 1-2
Hands-on research experience for high school students and UNH freshmen under the supervision of a Biological Sciences faculty member. This independent-study course introduces students to the research process and requires them to undertake a research project that involves laboratory and/or field work. Before a student can register for the course, he/she must meet with a Biological Sciences faculty member who will serve as mentor and supervisor, and the two of them must have a formal agreement on the specific research activities that the student must carry out. Prereq: permission. May be repeated up to a maximum of 4 credits.

BIOL 510 - Mushrooms, Molds, and Mildews: Introduction to the Fungal Kingdom
Credits: 4
Fungi represent a diversity of both form and function, and occupy nearly every habitat and niche on the planet. The fungi have been crucial in early and current scientific discovery as many species are used as model systems in biological sciences for the study of ecology, epidemiology, evolution, genetics, genomics, and physiology. Fungi occupy a number of important niches in natural and man made environments including: human, animal, insect, and plant pathogens, plant symbionts, organic matter decomposers, food source, antibiotic production, and are a crucial component of global nutrient cycling. The most recent use of fungi has been the identification of specific enzymes produced by fungi to degrade lignin substrates for the production of biofuels. This course will introduce students to the wonderful world of fungi in all their diversity and complexity.

BIOL 520 - Our Changing Planet
Credits: 4
Ecosystem interrelations and factors critical to maintain sustainability will be addressed in this course. Environmental issues such as water usage, pollution, and treatment; air and soil quality; fossil fuels and alternative energy sources will be presented. Not for credit if credit earned for ENE 520.
Attributes: Environment, TechSociety(Discovery)

BIOL 528 - Applied Biostatistics I
Credits: 4
Development of elementary statistical techniques through the analysis of prepared biological data. Continuous and discrete probability distributions, distributions of sample statistics, small-sample theory, regression, correlation, and analysis of variance. No credit for students who have completed ADM 430; ADMN 420; BIOL #555; EREC 525; HHS #540; MATH 439; MATH 539; MATH 644; PSYC 402; SOC 502.
Attributes: Quantitative Reasoning(Disc)

BIOL 541 - General Ecology
Credits: 4
Attributes: Writing Intensive Course

BIOL 544 - Your Genes, Your Life
Credits: 4
This course explores societal, ethical, and legal issues surrounding the human genomics revolution, with a particular focus on biomedical questions. What will it mean to know your complete DNA sequence? If everyone’s genome were included in a public database, how should that information be controlled and used? What, ultimately, do our genes encode? We will examine the basis of genetic inheritance, the interaction between genes and environment, and the types of genetic variation that occur between individuals and populations. In the medical realm, we will look at genetic and evolutionary processes underlying diseases such as cancer, and at the role of genomic technology in the drive toward personalized medicine. No credit for students who have completed BIOL 444A. Writing intensive.
Attributes: Environment, TechSociety(Discovery); Inquiry (Discovery); Writing Intensive Course
BIOL 550 - Mushroom Madness
Credits: 3
An intensive 2-week summer field and lab course that emphasizes the identification of mushrooms and other macrofungi that occur in New England forests. The role of mycorrhizal fungi, decomposers, and pathogens in forest ecosystems will be examined. Recent changes in our understanding of the evolution and systematics of macrofungi will be explored. Collecting trips to the White Mountain National Forest, NH and Massachusetts state and town forests will be followed by lab identification sessions that utilize traditional methods (microscopy, spore prints, staining reactions) as well as modern molecular techniques (DNA barcoding, RFLP). Smart phone apps will be used for recording field notes and images, and for uploading observations to on-line repositories (iNaturalist and MushroomObserver). One overnight field trip will be scheduled. Prereq: Intro course in Biology, Plant Biology or permission.

BIOL #555 - Experimental Design and Analysis Laboratory (EDAL)
Credits: 4
Using hands-on laboratory based inquiry, the course explores the concepts that form the basis of statistical analysis and experimental design. Working in small teams, students examine variability in different types of measurement data and empirically derive probability distributions including Poisson, Chi-square, Normal, Student’s t, and F distributions. An intuitive approach to data analysis and hypothesis testing provides students with a conceptual understanding of the basic and advanced statistical analyses including ANOVA, Linear, and Non-Linear Regression, Correlation, Goodness-of-fit, ANCOVA, and MANOVA. Students have an opportunity to become familiar with how these tests are implemented in several popular statistical software packages. The approach used in the course emphasizes development of analytical thinking skills and the application of conceptual understanding to solve new problems. Grading is based on participation in team projects, presentations, mastery of concepts and skills, and written reports. No credit for students who have completed ADM 430; ADMN 420; BIOL 528; EREC 525; HHS #540; MATH 439; MATH 539; MATH 644; PSYC 402; SOC 502.

Attributes: Quantitative Reasoning(Disc)

BIOL 566 - Systematic Botany
Credits: 4
Scientific basis of plant taxonomy and the identification and classification of major plant families, native trees, shrubs, and wildflowers. Field trips, plant collection. Prereq: BIOL 412 or BIOL 409. Lab. Special fee.

BIOL 600 - Field Experience
Credits: 1-4
A supervised experience providing the opportunity to apply academic experience in settings associated with future professional employment and/or related graduate opportunities. Must be approved by a faculty adviser selected by the student. May be repeated to a maximum of 8 credit hours. Prereq: permission. Cr/F.

BIOL 601 - Biology of Plants
Credits: 4
Structural and functional biology of the plant organism, with emphasis on land plants. Evolution of vegetative processes and sexual reproduction/breeding systems. Plant adaptations to environmental challenges. Prereq: BIOL 411 and BIOL 412 or ZOOL #412.

BIOL 633 - Quantitative Reasoning and Analysis for Life Sciences
Credits: 4
Students in Quantitative Reasoning and Analysis for Life Sciences will learn how to apply statistics, computer programming (in RStudio) and data visualization to the life sciences. The course will focus on the process of data analysis including data organization, graphing, hypothesis testing, predictive modeling, and communicating results. Students will become proficient in coding in RStudio and evaluating analyses in peer-reviewed literature. Prereq: BIOL 528 or any undergraduate statistics course.

BIOL 675 - Medical Botany
Credits: 4
This course is an integrated study of the medical, psychoactive, and poisonous plants, their active constituents their physiological effects on people, their mode of action an their role in historical and current medical practice. Emphasis is placed on the impact that plants have on human health. Students will take an active role in class, and will develop their own knowledge of medicinal plants through guided discussions and in-class group activities. Prereq: BIOL 411, BIOL 412.

BIOL 695 - Biology Teaching Practices
Credits: 1-4
Students assist in teaching labs in undergraduate biology courses supervised by the lab coordinator/instructor. Responsibilities include facilitating lab endeavors, giving a presentation, and writing a report. Prereq: permission. May be repeated to 4 credits maximum.

BIOL 700 - Current and Controversial Issues in Biology
Credits: 4
This course explores current issues in the biological sciences that are controversial and have a significant impact on individuals and society. Issues related to human population growth, evolution, cloning, synthetic biology, genetically modified organisms, free will, etc. Biology capstone. Only open to Animal Science, Zoology, Neuroscience and Behavior, Biology, Marine & Freshwater Biology, and Sust Agriculture& Food Systems majors.

BIOL 701 - Plant Physiology
Credits: 5
Structure-function relationship of plants, internal and external factors regulating plant growth and development, plant hormones, plant metabolism, water relations, and mineral nutrition. Prereq: BIOL 409 or SAFS 421 or BIOL 411 and BIOL 412; CHEM 403 and CHEM 404.

BIOL 702 - Techniques in Plant Physiology and Biochemistry
Credits: 4
The course provides hands-on experience with instrumentation and experimental procedures for analysis of plant growth and metabolism. Experiments demonstrate the regulation of plant growth and development in response to environmental and chemical factors, analysis of cellular contents and processes, and use of modern instrumentation for physiological and biochemical studies. The experiments deal with plant water relations, photosynthesis, plant hormones, enzyme kinetics, use of spectrophotometry, aseptic procedures, and liquid and thin-layer chromatography. Prereq: BIOL 411, BIOL 412, or permission of instructor. Special fee. Lab.
BIOL 704 - Plant-Microbe Interactions
Credits: 3
This course provides an overview of the molecular, cellular and biochemical factors underlying the interactions of plants with various microbes, including bacterial fungal, oomycete and viral pathogens, and mutualistic symbionts, such as mycorrhizal fungi and Rhizobium. Unifying themes underlying disease, resistance, and symbiosis are emphasized. Prereq: BIOL 411 and BIOL 412, BMS 503 and BMS 504 or GEN 604.

BIOL 709 - Plant Stress Physiology
Credits: 3
Physiological and biochemical mechanisms of plant responses to abiotic stresses, including drought, salt, high and low temperature, visible and ultra-violet radiation, heavy metals, and air pollutants. Current hypotheses, and agricultural and ecological implications are discussed. Prereq: plant physiology; biochemistry; or permission. (Offered alternate years.)

BIOL 711 - Applied Biostatistics II
Credits: 4
Design and analysis of biological and ecological research experiments. "Real world" studies used to discuss the identification of hypotheses, appropriate experimental design, and the application of statistical analyses including ANOVA, ANCOVA, correlation and regression, cluster analysis, classification and ordination techniques. Theoretical statistical concepts tailored to consider student's own thesis and dissertation research, allowing statistical problems to be addressed at various stages of the research process. Common computer packages used for analyses. Prereq: BIOL 528; permission.

BIOL 713 - Biochemistry of Photosynthesis
Credits: 4
Physiology and biochemistry of photosynthesis in higher plants and microorganisms: light reactions, electron transport, membrane structure and function, carbon assimilation pathways, energy conservation, and metabolic regulation. Agronomic and ecological aspects of photosynthesis are examined. Prereq: plant physiology or biochemistry (Not offered every year.) Special fee.

BIOL 720 - Plant-Animal Interactions
Credits: 4
This course will explore interactions between plants and animals and their evolutionary consequences on individual organisms as well as on ecological communities. Readings from the primary literature will serve as case studies to discuss hypotheses related to plant-animal interactions, the methods employed to test these hypotheses, and the conclusions drawn from these experiments. A weekly discussion session will be used as a grant-writing workshop, with activities designed to help students prepare an NSF-style grant as the culminating course project. Prereq: BIOL 411 and BIOL 412.

BIOL 752 - Mycology
Credits: 4
Classification, identification, culturing, life histories, and ecology of fungi, from slime molds to hallucinogenic mushrooms; the significance of fungi in human history, from their contributions to the art of bread making and alcoholic fermentation to their destructiveness as agents of deadly diseases of plants and animals. Prereq: BIOL 411 and BIOL 412 or BIOL 409 or equivalent. Special fee. Lab.